

MASTERING PYTHON NETWORK
AUTOMATION

Automating Container Orchestration,
Configuration, and Networking with

Terraform, Calico, HAProxy, and Istio

Tim Peters

Content

Preface
Chapter 1: Python Essentials for Networks

Role of Python in Network Programming
Overview

Factors Benefitting Networking

Learn to use Data Types
Numeric Data Types

Boolean Data Type

Sequence Data Types

Mapping Data Types

Set Data Types

Binary Data Types

Exploring Loops
For Loops

While Loops

Working with Functions
Defining Functions

Calling Functions

Default Arguments

Variable-length Arguments

Lambda Functions

Recursion

Global and Local Variables

Function Arguments

Nested Functions

Summary

Chapter 2: File Handling and Modules in Python
File Handling

Opening and Closing Files

Reading from Files

Writing to Files

Appending to Files

With Statement

Exception Handling:

Utilizing Modules
Creating a Module

Importing a Module

Built-In Modules

Creating Packages

Standard Library Modules

My First Python Script
Summary

Chapter 3: Preparing Network Automation Lab
Components of Network Automation Process

Network Devices

Network Emulator

Python Environment

Automation Scripts

Putting It All Together
Benefits of Network Automation Lab
Install NS3 Network Simulator

System Requirements

Install Required Dependencies

Download NS-3

Install Python

Update System

Install Python

Install pip

Install paramiko, Netmiko and Nornir

Install Virtual Environment
Create Virtual Environment

Activate the Virtual Environment

Install Python Libraries in Virtual Environment

Deactivate the Virtual Environment

Install Visual Studio Code
Download and Install VS Code

Install Python Extension

Configure Python Interpreter

Create Python Project

Write Python Code

Run Python Code

Summary
Chapter 4: Configuring Libraries and Lab Components

Nornir
Architecture of Nornir

Significance of Nornir

Paramiko
Architecture of Paramiko

Significance of Paramiko

Netmiko
Architecture of Netmiko

Significance of Netmiko

PyEZ
Architecture of PyEZ

Significance of PyEZ

Configure nornir, paramiko, netmiko and pyEZ
Installing and Configuring Nornir

Installing and Configuring Paramiko

Installing and Configuring Netmiko

Installing and Configuring PyEZ

Configure Ports
Configuring Ports on Switches

Configuring Ports on Routers

Configure Hosts
Configuring Hosts on Windows

Configuring Hosts on Linux

Configure Servers
Installing Server Operating System

Configuring Network Settings

Installing and Configuring Server Software

Configure Network Encryption
SSL/TLS

IPsec

SSH

VPN

Testing the Network Automation Environment
Test Connectivity between Hosts

Test Port Connectivity

Test SSH Connectivity

Test Network Automation Libraries

Test NS3 Emulator

Test Network Encryption

Summary

Chapter 5: Code, Test & Validate Network Automation
Understanding Network Automation Scripts
Procedure of Network Automation Scripts
Define Variables for Automation Scripts

Install Required Libraries

Import Libraries

Define Variables

Connect to Device

Send Configuration Commands

Close Connection

Create Script to Use Variables

Run the Script

Write Codes using Python Tools
Install Required Libraries and Tools

Import Libraries

Define Inventory

Define Tasks

Define Playbook

Execute the Script

Test and Validate the Script

Testing Network Automation Scripts
Set Up a Test Environment

Create Test Cases

Run the Code

Document Test Results

Debug Errors
Identify the Error or Issue

Review the Code

Use Print Statements

Use a Debugger

Fix the Error or Issue

Validate Network Automation Scripts
Prepare the Production Environment

Deploy Code to Production Environment or Devices

Run the Code on Production Environment or Devices

Verify the Output

Summary
Chapter 6: Automation of Configuration Management

Why Configuration Management?
Need of Configuration Management

Role of Python in Configuration Management

Server Provisioning with Terraform
Set up AWS Credentials

Install Terraform

Define Terraform Configuration

Initialize Terraform

Apply Terraform Configuration

Connect to EC2 Instance

Creating Server

Testing Server

Using Python to Automate System Settings
Import Necessary Modules

Define Timezone

Execute Command to Change Timezone

Verify Setting the Timezone

Using Python to Modify Base Configurations
Using Terraform to Modify Base Configurations
Automating System Identification

Install Terraform Module

Python Script to Retrieve System Information

Using Python to Automate Patches and Updates
Install Necessary Libraries

Check for Available Updates

Upgrade the System

Reboot the System

Schedule Regular Updates

Using Terraform to Roll Patches and Updates
Create Configuration File

Applying Configuration File

Identify Unstable and Non-compliant Configurations
Establish Connection with Device

Retrieve Running Configuration

Search Non-compliant Interfaces

Fixing Non-compliant Configurations

Summary
Chapter 7: Managing Docker and Container Networks

Docker and Containers
Docker & Container Fundmentals

Benefits & Applications

Role of Python in Containerization
Install and Configure Docker

Install Docker

Install Docker Python Module

Create Dockerfile

Build Docker Image

Run Docker Container

Test Docker Container

Using Python to Build Docker Images
Create DockerFile

Install Dependencies

Define Command

Build Docker Image

Run Container

Running Containers
Automate Running of Containers

Install Docker SDK for Python

Import Docker SDK

Connect to Docker Daemon

Define Container Configuration

Create Container

Start the Container

Stop and Remove Containers

Container Network Management
Overview

Managing Container Networks with Docker SDK

Summary
Chapter 8: Orchestrating Container & Workloads

Container Scheduling and Workload Automation
Network Service Disocvery
Understanding etcd
Service Discovery using etcd

Install etcd

Start etcd

Register Services

Discover Services

Automate Service Discovery

Sample Program to Automate Service Discovery
Kubernetes Load Balancers
Exploring HAProxy
Manage Load Balancer Servers using HAProxy

Import Required Libraries

Define API Endpoint URLs

Define Function to Add or Remove Servers

Call Function

Sample Program to Manage Load Balancer Servers
Automate Add/Manage SSL Certificate

Using Cryptography Library to Automate SSL

Step-by-step Illustration of Sample Program

Manage Container Storage
Sample Program

Step-by-step Illustration of Sample Program

Necessity of Container Performance
Why Container Performance?

Container Performance KPIs

Setting Up Container Performance Monitoring
Install the Required Libraries

Import Required Libraries

Connect to Docker API

Get Container List

Pull Performance Metrics

Print Container Metrics

Automated Rolling of Updates
Get Current Deployment Object

Update Deployment Object

Check Status of Deployment Rollout

Clean Up Resources

Summary
Chapter 9: Pod Networking

Pods and Pod Networking
What are Pods?

Pods beyond Containers

Networking in Pods

Setting Up Pod Network
Choose a Pod Network Provider

Install Pod Network Provider

Configure Pod Network

Verify the Pod Network

Exploring Calico
Overview

Characteristics of Calico

Getting Started with Calico

Using Calico to Setup Pod Network
Routing Protocols

Border Gateway Protocol (BGP)

Open Shortest Path First (OSPF)

Intermediate System to Intermediate System (IS-IS)

Routing Information Protocol (RIP)

Exploring Cilium
Key Features of Cilium

Cilium Architecture

Install Cilium

Automation of Network Policies
Overview

Steps for Network Policies Automation

Using Calico to Automate Network Policies
Workload Routing

Need of Workload Routing

Istio

Linkerd

Consul

Summary
Chapter 10: Implementing Service Mesh

Service-to-Service Communication
Remote Procedure Calls (RPCs)

Message-based Communication

Need of Service-to-Service

Rise of Service Mesh
Exploring Istio

Overview

Istio’s Capabilities

Installing Istio
Cluster Traffic

NodePort

LoadBalancer

Ingress

Istio Control Plane

Using Istio to Route Traffic
Metrics, Logs and Traces

Metrics

Logs

Traces

Using Grafana to Collect Metrics
Steps to Collect Metrics

Summary

Preface
With "Mastering Python Network Automation," you can streamline
container orchestration, configuration management, and resilient
networking with Python and its libraries, allowing you to emerge as a
skilled network engineer or a strong DevOps professional.
From the ground up, this guide walks readers through setting up a network
automation lab using the NS3 network simulator and Python programming.
This includes the installation of NS3, as well as python libraries like nornir,
paramiko, netmiko, and PyEZ, as well as the configuration of ports, hosts,
and servers. This book will teach you the skills to become a proficient
automation developer who can test and fix any bugs in automation scripts.
This book examines the emergence of the service mesh as a solution to the
problems associated with service-to-service communication over time.
This book walks you through automating various container-related tasks in
Python and its libraries, including container orchestration, service
discovery, load balancing, container storage management, container
performance monitoring, and rolling updates. Calico and Istio are two well-
known service mesh tools, and you'll find out how to set them up and
configure them to manage traffic routing, security, and monitoring.
Additional topics covered in this book include the automation of network
policies, the routing of workloads, and the collection and monitoring of
metrics, logs, and traces. You'll also pick up some tips and tricks for
collecting and visualising Istio metrics with the help of tools like Grafana.
In this book you will learn how to:

Use of Istio for cluster traffic management, traffic routing, and
service mesh implementation.
Utilizing Cilium and Calico to solve pod networking and
automate network policy and workload routing.
Monitoring and managing Kubernetes clusters with etcd and
HAProxy load balancers and container storage.
Establishing network automation lab with tools like NS3
emulator, Python, Virtual Environment, and VS Code.

Establishing connectivity between hosts, port connectivity, SSH
connectivity, python libraries, NS3, and network encryption.

GitforGits
Prerequisites
"Mastering Python Network Automation" is an essential guide for network
engineers, DevOps professionals, and developers who want to streamline
container orchestration and resilient networking with the help of Terraform,
Calico, and Istio. Knowing Python and basics of networking is sufficient to
pursue this book.

Codes Usage
Are you in need of some helpful code examples to assist you in your
programming and documentation? Look no further! Our book offers a
wealth of supplemental material, including code examples and exercises.

Not only is this book here to aid you in getting your job done, but you have
our permission to use the example code in your programs and
documentation. However, please note that if you are reproducing a
significant portion of the code, we do require you to contact us for
permission.

But don't worry, using several chunks of code from this book in your
program or answering a question by citing our book and quoting example
code does not require permission. But if you do choose to give credit, an
attribution typically includes the title, author, publisher, and ISBN. For
example, "Mastering Python Network Automation by Tim Peters".

If you are unsure whether your intended use of the code examples falls
under fair use or the permissions outlined above, please do not hesitate to
reach out to us at kittenpub.kdp@gmail.com .

We are happy to assist and clarify any concerns.

Acknowledgement
Tim Peters expresses his gratitude to all of the other contributors to Rust
and work tirelessly to improve the quality of the programming language.
Tim would want to express his gratitude to the entire team of GitforGits and
Kitten Publishing who helped create a powerful yet simple book that
outperforms coding in a relatively short period of time. And, lastly to his
entire family and friends extending their support to finish the project at the
earliest.

CHAPTER 1: PYTHON ESSENTIALS
FOR NETWORKS

Role of Python in Network Programming
Overview
Python is a popular programming language that is widely used in the field
of network programming and network automation. Python's popularity for
network programming stems from its simplicity, flexibility, and extensive
collection of libraries and frameworks that make it easy to work with
network devices and protocols. This chapter explores the concept of
Python's ease of use for network programming and network automation.

Python is an interpreted language that is easy to learn and use, making it a
popular choice for network programmers and network engineers. Python's
syntax is easy to read and understand, and the language provides a rich set
of tools and libraries that simplify network programming tasks. For
instance, Python's standard library includes modules for handling
networking protocols such as TCP/IP, UDP, and HTTP, making it easier to
work with these protocols in Python code.

Factors Benefitting Networking
One of the most popular libraries for network programming in Python is the
Socket library. The Socket library provides an interface for creating
network sockets, which are endpoints for network communication. With the
Socket library, Python developers can create client-server applications, send
and receive data over network connections, and handle network errors and
exceptions.

Python's ease of use for network programming is also due to the availability
of third-party libraries and frameworks. For instance, the Paramiko library
is a popular Python library for working with Secure Shell (SSH) protocols.
With Paramiko, Python developers can establish SSH connections with
network devices, execute commands on remote devices, and transfer files
over the network. Similarly, the Netmiko library is a Python library for
working with network devices such as routers and switches. With Netmiko,
Python developers can automate network device configuration, backup and
restore network configurations, and collect device information.

Another reason why Python is popular for network automation is its
integration with other tools and technologies. For example, Python can be
used with Ansible, a popular IT automation tool, to automate network tasks
such as device configuration and monitoring. Python can also be used with
the Simple Network Management Protocol (SNMP) to monitor network
devices, collect network statistics, and troubleshoot network issues.

To conclude, Python's ease of use for network programming and network
automation stems from its simplicity, flexibility, and extensive collection of
libraries and frameworks. Python provides an easy-to-learn syntax, a rich
set of tools and libraries for network programming, and seamless
integration with other tools and technologies. Python's popularity in the
field of network programming and network automation is set to grow as
more organizations adopt automation and seek to streamline their network
operations.

Learn to use Data Types
Python is a dynamically typed language that supports several data types. A
data type is a classification of data that determines the type of operations
that can be performed on it. In this chapter, we will discuss the different
data types supported by Python along with examples and illustrations.

Numeric Data Types
Python supports various numeric data types such as integers, floating-point
numbers, and complex numbers.

Integers
An integer is a whole number, either positive or negative, without a decimal
point. In Python, integers are represented by the int class. For example, 5,
-10, and 0 are all integers.

x = 5
y = -10
print(x, y)

Output:
5 -10

Floating-Point Numbers
A floating-point number is a number that has a decimal point. In Python,
floating-point numbers are represented by the float class. For example, 3.14
and -2.5 are floating-point numbers.

x = 3.14
y = -2.5
print(x, y)

Output:
3.14 -2.5

Complex Numbers

A complex number is a number that has both a real and imaginary part. In
Python, complex numbers are represented by the complex class. For
example, 3 + 4j is a complex number where 3 is the real part and 4j is the
imaginary part.

x = 3 + 4j
y = -2 - 3j
print(x, y)

Output:
(3+4j) (-2-3j)

Boolean Data Type
A boolean data type is a data type that can have one of two possible values:
True or False. In Python, boolean values are represented by the bool class.
Boolean values are used in conditional statements and loops to control
program flow.

x = True
y = False
print(x, y)

Output:
True False

Sequence Data Types
Python supports several sequence data types such as strings, lists, tuples,
and range objects.

Strings
A string is a sequence of characters. In Python, strings are represented by
the str class. Strings can be enclosed in single quotes ('...') or double quotes
("...") or triple quotes ('''...''' or """...""").

x = 'Hello'
y = "World"

print(x, y)

Output:
Hello World

Lists
A list is a collection of items that are ordered and changeable. In Python,
lists are represented by the list class. Lists can contain any data type,
including other lists.

x = [1, 2, 3, 'four', 5.5]
y = ['apple', 'banana', 'cherry']
print(x, y)

Output:
[1, 2, 3, 'four', 5.5] ['apple', 'banana', 'cherry']

Tuples
A tuple is a collection of items that are ordered and immutable. In Python,
tuples are represented by the tuple class. Tuples can contain any data type,
including other tuples.

x = (1, 2, 3, 'four', 5.5)
y = ('apple', 'banana', 'cherry')
print(x, y)

Output:
(1, 2, 3, 'four', 5.5) ('apple', 'banana', 'cherry')

Range Objects
A range object is an immutable sequence of numbers. In Python, range
objects are created using the range() function. Range objects are commonly
used in loops to execute a set of instructions a certain number of times.

x = range(0, 10)
for i in x:
 print(i)

Output:
0
1
2
3
4
5
6
7
8
9

Mapping Data Types
Python supports a mapping data type called a dictionary.

Dictionaries
A dictionary is an unordered collection of key-value pairs. In Python,
dictionaries are represented by the dict class. Dictionaries are used to store
and retrieve data based on a key rather than an index.

x = {'name': 'John', 'age': 25, 'city': 'New York'}
y = {1: 'one', 2: 'two', 3: 'three'}
print(x, y)

Output:
{'name': 'John', 'age': 25, 'city': 'New York'} {1: 'one', 2: 'two', 3:

'three'}

Set Data Types
Python supports a set data type.

Sets
A set is an unordered collection of unique elements. In Python, sets are
represented by the set class. Sets are used to perform mathematical set
operations such as union, intersection, and difference.

x = {1, 2, 3, 4, 5}
y = {4, 5, 6, 7, 8}
print(x, y)

Output:
{1, 2, 3, 4, 5} {4, 5, 6, 7, 8}

Binary Data Types
Python supports two binary data types, bytes and bytearray.

Bytes
A bytes object is an immutable sequence of bytes. In Python, bytes objects
are represented by the bytes class.

x = b'Hello'
y = b'\x48\x65\x6c\x6c\x6f'
print(x, y)

Output:
b'Hello' b'Hello'

Bytearray
A bytearray object is a mutable sequence of bytes. In Python, bytearray
objects are represented by the bytearray class.

x = bytearray(b'Hello')
x[0] = 72
print(x)

Output:
bytearray(b'Hello')

Overall, Python supports various data types such as numeric, boolean,
sequence, mapping, set, and binary data types. Understanding these data
types and their characteristics is essential to write efficient and effective
Python programs.

Exploring Loops
Loops in Python are used to execute a set of instructions repeatedly. There
are two types of loops in Python: for loops and while loops. In this tutorial,
we will discuss both types of loops with practical examples.

For Loops
For loops are used to iterate over a sequence (such as a list, tuple, or string)
or other iterable objects (such as a dictionary or a file). The syntax of the
for loop is as follows:

for variable in sequence:
 # Code to be executed

The for loop first initializes the variable with the first value in the sequence.
Then, it executes the code block until the last value in the sequence is
reached.

Example#1: Looping through a list

fruits = ['apple', 'banana', 'cherry']
for fruit in fruits:
 print(fruit)

Output:
apple
banana
cherry

Example#2: Looping through a string

name = 'John'
for character in name:
 print(character)

Output:
J

o
h
n

Example#3: Looping through a dictionary

person = {'name': 'John', 'age': 25}
for key, value in person.items():
 print(key, value)

Output:
name John
age 25

While Loops
While loops are used to execute a set of instructions repeatedly as long as a
certain condition is true. The syntax of the while loop is as follows:

while condition:
 # Code to be executed

The while loop first checks the condition. If the condition is true, it executes
the code block. Then, it checks the condition again and continues until the
condition becomes false.

Example#1: Looping until a condition is met

count = 0
while count < 5:
 print(count)
 count += 1

Output:
0
1
2

3
4

Example#2: Looping until a user enters a valid input

valid_input = False
while not valid_input:
 user_input = input('Enter a number: ')
 if user_input.isdigit():
 print('You entered:', user_input)
 valid_input = True
 else:
 print('Invalid input, please try again')

Output:
Enter a number: abc
Invalid input, please try again
Enter a number: 123
You entered: 123

Example#3: Looping until a user decides to quit

while True:
 user_input = input('Enter a number or type "quit" to exit: ')
 if user_input == 'quit':
 break
 elif user_input.isdigit():
 print('You entered:', user_input)
 else:
 print('Invalid input, please try again')

Output:
Enter a number or type "quit" to exit: abc
Invalid input, please try again

Enter a number or type "quit" to exit: 123
You entered: 123
Enter a number or type "quit" to exit: quit

Overall, loops in Python are essential for executing a set of instructions
repeatedly. The for loop is used to iterate over a sequence or iterable object,
while the while loop is used to execute a set of instructions repeatedly as
long as a certain condition is true. Understanding loops and their syntax is
essential for writing efficient and effective Python programs.

Working with Functions
Functions in Python are reusable blocks of code that perform a specific
task. They are used to reduce code duplication and to make code easier to
read and maintain. In this tutorial, we will discuss the basics of functions in
Python with practical examples.

Defining Functions
The syntax for defining a function in Python is as follows:

def function_name(parameters):
 # Code to be executed
 return return_value

The function definition starts with the def keyword, followed by the name
of the function, and a set of parentheses that may or may not contain
parameters. The code to be executed by the function is indented and
followed by an optional return statement that specifies the value to be
returned by the function.

Example#1: A simple function that adds two numbers

def add_numbers(a, b):
 result = a + b
 return result

Example#2: A function that prints a greeting message

def say_hello(name):
 print(f'Hello, {name}!')

Calling Functions
To call a function in Python, you simply write the name of the function
followed by a set of parentheses that may or may not contain arguments.

Example#1: Calling the add_numbers function

result = add_numbers(2, 3)
print(result)

Output:
5

Example#2: Calling the say_hello function

say_hello('John')

Output:
Hello, John!

Default Arguments
In Python, you can define default values for function parameters. If a value
is not passed for a parameter, the default value is used instead.

Example#1: A function with default arguments

def say_hello(name='World'):
 print(f'Hello, {name}!')

Example#2: Calling the say_hello function with default
arguments

say_hello()
say_hello('John')

Output:
Hello, World!
Hello, John!

Variable-length Arguments
In Python, you can define functions that accept a variable number of
arguments. There are two ways to define variable-length arguments: using
the *args syntax to pass a variable number of positional arguments, or using
the **kwargs syntax to pass a variable number of keyword arguments.

Example#1: A function with variable-length positional
arguments

def print_args(*args):
 for arg in args:
 print(arg)

Example#2: Calling the print_args function with variable-
length positional arguments

print_args(1, 2, 3)

Output:
1
2
3

Example#3: A function with variable-length keyword
arguments

def print_kwargs(**kwargs):
 for key, value in kwargs.items():
 print(key, value)

Example#4: Calling the print_kwargs function with
variable-length keyword arguments

print_kwargs(name='John', age=25)

Output:
name John
age 25

Lambda Functions
Lambda functions, also known as anonymous functions, are small, one-line
functions that can be defined without a name. They are useful for writing
quick and simple functions that are only used once.

Example#1: A lambda function that doubles a number

double = lambda x: x * 2
result = double(3)
print(result)
Output:
6

Example#2: A lambda function that sorts a list of tuples by
the second element

students = [('John', 25), ('Mary', 23), ('Tom', 27)]
students.sort(key=lambda x: x[1])
print(students)

Output:
[('Mary', 23), ('John', 25), ('Tom', 27)]

Recursion
In Python, you can define functions that call themselves. These functions
are called recursive functions, and they are useful for solving problems that
can be broken down into smaller subproblems.

Example#1: A recursive function that calculates the
factorial of a number

def factorial(n):
 if n == 0:
 return 1
 else:
 return n * factorial(n - 1)

Example#2: Calling the factorial function

result = factorial(5)
print(result)

Output:
120

Global and Local Variables
In Python, variables defined inside a function are local to that function and
cannot be accessed outside of it. Variables defined outside of a function are
global and can be accessed anywhere in the program.
Example#1: A function that modifies a global variable

count = 0
def increment_count():
 global count
 count += 1
increment_count()
increment_count()
increment_count()
print(count)

Output:
3

Example#2: A function that uses a local variable

def square(x):
 result = x ** 2
 return result
print(square(5))

Output:
25

Function Arguments
In Python, function arguments can be passed by reference or by value.
When an argument is passed by reference, any changes made to the
argument inside the function are reflected outside the function. When an
argument is passed by value, any changes made to the argument inside the
function are not reflected outside the function.

Example#1: A function that modifies a list passed by
reference

def add_to_list(numbers, x):
 numbers.append(x)
my_list = [1, 2, 3]
add_to_list(my_list, 4)
print(my_list)

Output:
[1, 2, 3, 4]

Example#2: A function that does not modify an integer
passed by value

def square(x):
 x = x ** 2
 return x

number = 5
square(number)
print(number)

Output:
5

Nested Functions
In Python, you can define functions inside other functions. These functions
are called nested functions, and they are useful for organizing code and
limiting the scope of variables.

Example#1: A function that defines a nested function

def outer_function():
 def inner_function():
 print('This is the inner function')
 inner_function()
outer_function()
Output:
This is the inner function
Example#2: A function that returns a nested function

def outer_function():
 def inner_function():
 print('This is the inner function')
 return inner_function
function = outer_function()
function()

Output:
This is the inner function

Overall, functions are an essential part of Python programming. They allow
us to write reusable code, organize our programs, and solve problems more

efficiently. Understanding the basics of functions is crucial for any Python
developer, and the examples provided in this tutorial should help you get
started.

Summary
In this chapter, we covered a wide range of topics related to Python
programming. We started by discussing the basics of Python, including its
history, features, and use cases. Python is a popular high-level programming
language that is used for a wide range of tasks, including web development,
data analysis, machine learning, and more. It is known for its simplicity,
readability, and flexibility.

We then covered the fundamental concepts of Python, such as variables,
data types, operators, and control structures. Variables are used to store
data, while data types define the kind of data that can be stored. Operators
are used to perform operations on data, while control structures, such as if-
else statements and loops, are used to control the flow of a program.

CHAPTER 2: FILE HANDLING AND
MODULES IN PYTHON

File Handling
File handling is an important aspect of programming, and it refers to the
various operations that can be performed on files such as reading from,
writing to, and modifying files. In Python, you can perform file handling
operations using the built-in file handling functions.

There are three main file handling modes in Python: read, write, and
append. In the read mode, you can read data from a file. In the write mode,
you can create a new file or overwrite an existing file with new data. In the
append mode, you can add new data to an existing file.

Opening and Closing Files
To perform file handling operations, you need to open a file first. You can
do this using the open() function, which takes two arguments: the name of
the file and the mode in which you want to open the file.

Example#1: Opening a file in read mode

file = open('example.txt', 'r')

Example#2: Opening a file in write mode

file = open('example.txt', 'w')

Once you have finished performing operations on the file, you should close
the file using the close() function.

Example#3: Closing a file

file.close()

Reading from Files
In Python, you can read data from files using the read() function. This
function reads the entire file and returns the contents of the file as a string.

Example#1: Reading from a file
file = open('example.txt', 'r')

contents = file.read()
print(contents)
file.close()

Output:
This is an example file.
It contains some text.

You can also read data from a file line by line using the readline() function.

Example#2: Reading from a file line by line

file = open('example.txt', 'r')
line = file.readline()
while line != '':
 print(line)
 line = file.readline()
file.close()

Output:
This is an example file.
It contains some text.

Writing to Files
In Python, you can write data to files using the write() function. This
function writes data to a file and returns the number of characters written to
the file.

Example#1: Writing to a file

file = open('example.txt', 'w')
file.write('This is a new line.\n')
file.write('This is another new line.\n')
file.close()

Example#2: Writing to a file using a list of strings

lines = ['This is a new line.\n', 'This is another new line.\n']
file = open('example.txt', 'w')
file.writelines(lines)
file.close()

Both examples produce the same output:
This is a new line.
This is another new line.

Appending to Files
In Python, you can append data to a file using the append() function. This
function adds data to the end of a file without overwriting any existing data.

Example: Appending to a file

file = open('example.txt', 'a')
file.write('This is a third line.\n')
file.close()

Output:
This is a new line.
This is another new line.
This is a third line.

With Statement
In Python, you can use the with statement to open a file and automatically
close it when you are finished performing operations on the file. This is a
safer and more efficient way of working with files, as it ensures that the file
is properly closed even if an error occurs.

Example#1: Using the with statement to read from a file

with open('example.txt', 'r') as file:
 contents = file.read()
 print(contents)

Output:
This is a new line.
This is another new line.
This is a third line.

Example#2: Using the with statement to write to a file

with open('example.txt', 'w') as file:
 file.write('This is a new line.\n')
 file.write('This is another new line.\n')

Example#3: Using the with statement to append to a file

with open('example.txt', 'a') as file:
 file.write('This is a third line.\n')

Exception Handling:
When working with files, it is important to handle exceptions properly in
case an error occurs. This can be done using a try and except block.
Example: Handling exceptions when reading from a file

try:
 file = open('example.txt', 'r')
 contents = file.read()
 print(contents)
except FileNotFoundError:
 print('File not found')
finally:
 file.close()

Output:
This is a new line.
This is another new line.
This is a third line.

In the above example, we use a try block to attempt to read from a file. If
the file is not found, we handle the FileNotFoundError exception using an
except block. We also use a finally block to ensure that the file is properly
closed, even if an error occurs.
To sum it up, file handling is an important aspect of programming, and
Python provides a range of built-in functions that allow you to perform
various file handling operations. By using the open() function to open a file,
and the read(), write(), and append() functions to perform operations on the
file, you can easily read from and write to files in Python. Additionally, the
with statement can be used to automatically close a file once you have
finished working with it, and exception handling can be used to handle
errors that may occur when working with files.

Utilizing Modules
A module is a file that uses the Python programming language and contains
statements and definitions. One way to think of it is as a mechanism for
organising and reusing code. Python programmes can take advantage of the
functions, classes, and variables stored in modules because modules can be
imported into other Python programmes.

Modules, in their conceptual form, offer a way to partition large computer
programmes into a number of smaller, more manageable parts. Developers
can more easily maintain and debug their code when it is organised into
modules, and they can reuse code across multiple projects if they organise
their code this way.

Because modules can be imported into other programmes, they allow
programmers to avoid writing code twice as often, which is another way
that modules promote code reusability.

Python offers a vast library of modules that can be used for a variety of
purposes, including working with files, establishing and maintaining a
network, and processing data. The code that a developer writes can be
encapsulated in their own modules, which they can then share with other
developers.

Creating a Module
To create a module, simply write your Python code in a file with a .py
extension. For example, let's create a module named my_module.py with
the following code:

my_module.py
def hello(name):
 print(f"Hello, {name}!")

This module contains a function named hello that takes a name as an
argument and prints a greeting.

Importing a Module

Once you have created a module, you can import it into other Python scripts
or modules. There are several ways to import a module:

import statement
Use the import statement followed by the name of the module to import the
entire module.
Example:

import my_module
my_module.hello("John")

Output:
Hello, John!

from statement
Use the from statement followed by the name of the module and the
keyword import to import specific functions or variables from a module.
Example:

from my_module import hello
hello("Jane")

Output:
Hello, Jane!

Built-In Modules
Python also comes with a set of built-in modules that provide useful
functionality out of the box. These modules can be imported just like any
other module.
Example: Using the random module to generate a random number

import random
number = random.randint(1, 10)
print(number)

Output:
7

In the above example, we import the random module and use the randint()
function to generate a random integer between 1 and 10.

Creating Packages
Python modules can be organized into packages, which are simply
directories containing a __init__.py file and one or more Python modules.
Packages can be nested within other packages to create a hierarchical
organization of code.
Example:

my_package/
├── __init__.py
├── module1.py
└── module2.py

In the above code, my_package is a package that contains two Python
modules, module1.py and module2.py. The __init__.py file is required to
indicate that the directory is a package.

Standard Library Modules
Python also comes with a large standard library of modules that provide
additional functionality for tasks such as working with dates and times,
performing network operations, and parsing XML and JSON data. These
modules can be imported just like any other module.
Example: Using the datetime module to work with dates and times

import datetime
today = datetime.date.today()
print(today)

Output:
2023-02-22
In the above example, we import the datetime module and use the
date.today() function to get the current date.

To summarize it in short, Python modules provide a way to organize code
into reusable units that can be imported into other modules or scripts. By
using the import and from statements, you can easily import modules and
their functions and variables into your Python code. Python also comes with
a set of built-in modules and a large standard library of modules that
provide additional functionality for a wide range of tasks. By organizing
your code into packages, you can create a hierarchical organization of code
that makes it easy to manage and maintain.

My First Python Script
Let us create a simple Python script that demonstrates some of the concepts
we've covered in this chapter.
The script will perform the following tasks:

Prompt the user for their name and age
Calculate the user's year of birth
Check if the user is old enough to vote
Write the user's name, age, year of birth, and voting eligibility
to a file

Following is the script:

import datetime
def calculate_year_of_birth(age):
 current_year = datetime.date.today().year
 return current_year - age
def check_voting_eligibility(age):
 return age >= 18
def main():
 name = input("What is your name? ")
 age = int(input("What is your age? "))
 year_of_birth = calculate_year_of_birth(age)
 eligible_to_vote = check_voting_eligibility(age)
 with open("user_info.txt", "w") as file:
 file.write(f"Name: {name}\n")
 file.write(f"Age: {age}\n")
 file.write(f"Year of birth: {year_of_birth}\n")
 if eligible_to_vote:
 file.write("Eligible to vote: Yes\n")
 else:
 file.write("Eligible to vote: No\n")
if __name__ == "__main__":

 main()

Let us see how the script works as below:

We import the datetime module, which we use in the
calculate_year_of_birth function to get the current year.
We define a calculate_year_of_birth function that takes an age
as an argument and returns the year of birth.
We define a check_voting_eligibility function that takes an age
as an argument and returns True if the person is eligible to vote
(i.e., 18 years or older).
We define a main function that prompts the user for their name
and age, calculates the year of birth and voting eligibility using
the other functions, and writes the user's information to a file.
We use the with statement to open the file user_info.txt in write
mode, and we use the write method to write the user's
information to the file.
Finally, we use the if __name__ == "__main__" statement to
call the main function when the script is run.
When you run the script, it will prompt you for your name and
age, and then create a file named user_info.txt with your
information.

The contents of the file will look something like this:

Name: John
Age: 30
Year of birth: 1992
Eligible to vote: Yes

This your own first script demonstrates some of the key concepts you have
learned, such as input/output, functions, modules, and file handling. You
can use these concepts to create much more complex and powerful Python
programs.

Summary
In this chapter, we discussed some of the most advanced features of Python,
such as modules, and file handling. Modules are used to organize code into
separate files and namespaces. File handling is used to read from and write
to files, which can be useful for storing and retrieving data.

Throughout the chapter, we emphasized the importance of good
programming practices, such as writing clean and readable code,
commenting and documenting code, and using version control systems like
Git. These practices can help make your code more maintainable, reliable,
and scalable over time. Finally, we created a simple Python script that
demonstrated some of the key concepts we discussed, such as input/output,
functions, modules, and file handling. The script prompted the user for their
name and age, calculated their year of birth and voting eligibility, and wrote
their information to a file.

In summary, Python is known for its simplicity, flexibility, and readability,
and it has a large and active community of developers and users. By
mastering the fundamental concepts of Python, as well as some of the more
advanced features and practical applications, you can become a skilled
Python programmer and create a variety of useful and innovative
applications.

CHAPTER 3: PREPARING
NETWORK AUTOMATION LAB

Components of Network Automation Process
The process of automating network operations in order to reduce the
amount of manual labour required for network management is referred to as
network automation. In order to test and develop network automation
scripts and tools, it is absolutely necessary to have network automation labs.
In this chapter, we will talk about the various components of a network
automation lab, as well as how these components work together to provide
a streamlined experience for network automation. In addition, we will
discuss how these components work together to provide a streamlined
experience for network automation.

Network devices, a network emulator, an environment based on the Python
programming language, and automation scripts are the standard elements
that make up a network automation lab. When put together, these
components produce a simulated network environment that can be put to
use in the creation and testing of scripts for network automation. This
environment can be used for a variety of purposes.

Network Devices
The hardware components known as "network devices" are what make it
possible for devices connected to a computer network to communicate with
one another. They make it easier for devices on a network to communicate
with one another and gain access to shared resources by facilitating the
transmission of data between the various components of a network.
There are many different kinds of network devices, each of which has its
own particular function and part to play in the infrastructure of the network.
Routers, switches, hubs, firewalls, and modems are just some of the devices
that are used to create and maintain networks.

Due to the fact that they are in charge of directing traffic between various
networks, routers are widely considered to be the most essential networking
devices. They make use of routing tables to determine the most efficient
route for data packets to take, taking into account information such as IP
addresses and the topology of the network. Routers typically come
equipped with a variety of interfaces, which enables them to connect to a
wide variety of networks as well as devices. On the other hand, switches are

what are used to connect different devices that are part of the same network.
They use the MAC addresses to figure out where to send the data packets,
which enables the devices to communicate directly with one another.
Managed switches provide a higher level of control and more configuration
options than unmanaged switches do. Switches can either be managed or
unmanaged.
Hubs are a different kind of networking device that are used to connect
devices that are already part of the same network. Hubs, on the other hand,
do not care about the final destination of the data packets they receive;
rather, they simply transmit them to all of the devices to which they are
connected. Because of this, there is a potential for increased network traffic
and congestion, which may result in hubs being utilised less frequently in
the future. Firewalls are devices that can be installed on a network to
prevent unauthorised access and malicious traffic from entering the system.
They can be based on either hardware or software, and in order to block
unwanted traffic while allowing legitimate traffic to pass through, they
typically use a combination of rules, policies, and filters. These can be
implemented in either form.

In order to connect a computer or other device to the internet, you will need
to use a modem, which is a type of network device. They take the digital
signals produced by a computer and convert them into analogue signals that
can be sent over telephone lines or cable connections, thereby enabling
users to connect to the internet through the medium of their internet service
provider (ISP). Other types of network devices include access points, which
are used to connect wireless devices to a network, and network interface
cards, also known as NICs, which are used to connect devices to a network
using a wired connection. Both of these types of devices are considered to
be subtypes of network devices.

In general, network devices are essential components of modern computer
networks because they enable devices to communicate with one another and
access resources that are shared by the network. Network administrators are
able to design and maintain network infrastructures that are efficient,
secure, and reliable in order to meet the needs of their organisations if they

have a thorough understanding of the various types of network devices and
the functions they perform.

Network Emulator
A network emulator is a piece of software that gives developers and IT
professionals the ability to simulate and test real-world network conditions
within a simulated network environment. In order to test the performance of
applications and network infrastructure under real-world conditions, it
simulates various types of network connections, bandwidths, latencies, and
packet loss rates. The performance of applications under varying network
types and conditions can be tested using a network emulator, the impact of
network changes can be verified, and service level agreements for network-
dependent applications can be ensured using a network emulator. These are
just some of the many possible applications of a network emulator (SLAs).

A network emulator is typically made up of both software and hardware
components that, when combined, serve the purpose of simulating the
workings of a network. The software component is in charge of providing
the tools necessary to configure and control the network conditions, while
the hardware component is in charge of creating the actual physical
environment in which the network emulation will take place.

Users are granted the ability to configure various network parameters
through the use of the software component of a network emulator. These
parameters include bandwidth, latency, packet loss rate, and network
topology. In addition to this, it offers tools that can generate traffic and
measure performance metrics like throughput, latency, and jitter. When
using a network emulator, developers and IT professionals are able to test
their applications and infrastructure in an environment that is both safe and
under their control. This is one of the most significant advantages of using a
network emulator. This can help to identify potential problems before they
occur in production environments, which can help to save time as well as
reduce costs associated with downtime and lost revenue.

The ability of users to replicate different network conditions, such as those
that are present in environments that are remotely located or congested, is
another advantage that comes with the utilisation of a network emulator.

This can be helpful in identifying and fixing performance issues, some of
which might not be obvious when the network conditions are ideal.
Emulators of a network can also be used to test and optimise network
infrastructure, such as routers, switches, and firewalls. This is another use
for network simulators. Users are able to identify potential bottlenecks and
optimise the configuration of network devices by simulating different
network conditions and identifying potential bottlenecks.

In a nutshell, a network emulator is a tool that gives programmers and IT
professionals the ability to simulate various network conditions and test
applications and infrastructure in an environment that is both safe and under
their direct control. It is possible to use it to identify and resolve
performance issues, optimise network infrastructure, and ensure that
network-dependent applications meet service level agreements using this
tool.

Python Environment
Python is a well-liked programming language for network automation
because of its user-friendliness, adaptability, and extensive repository of
libraries developed by third parties. A Python environment includes not
only the Python programming language but also any additional libraries or
tools that are necessary to create and execute Python scripts. The Python
environment in a lab dedicated to network automation will typically consist
of the Python interpreter, a package manager such as pip, and any third-
party libraries that are necessary for performing tasks related to network
automation.

Automation Scripts
Automation scripts are Python scripts that automate network tasks such as
configuration management, network monitoring, and troubleshooting.
These scripts use APIs and protocols such as NETCONF, RESTCONF,
SNMP, and SSH to interact with network devices and retrieve or modify
network configuration data. Automation scripts can be run on-demand or
scheduled to run at specific intervals, providing continuous network
monitoring and maintenance.

Putting It All Together
Choosing a network emulator should be the first thing you do when you're
getting ready to set up a network automation lab. Popular emulators include
GNS3, EVE-NG, and VIRL. The emulator needs to be set up so that it can
generate virtual network devices that can simulate the operating
environment of the network. It is recommended that the simulated network
topology be used to connect the virtual devices so that it accurately reflects
the real-world network environment.

After that, a Python environment needs to be created on the laboratory
computer. Either by using a Python distribution like Anaconda or by
manually installing Python and any necessary libraries, this can be
accomplished. Anaconda is one example of a Python distribution. A
package manager, such as pip, should be included in the Python
environment in order to facilitate the installation of any necessary third-
party libraries. Scripts for automation can be developed and tested in the lab
environment once the Python environment has been set up. Text editors or
integrated development environments (IDEs) like PyCharm or Visual
Studio Code can be used to write automation scripts. Another option is to
use a simple text editor. In order to interact with network devices, the
scripts ought to make use of Python libraries such as Netmiko, Nornir, or
PyEZ.

Automation scripts can be executed by hand, or they can be programmed to
execute at predetermined intervals using tools like cron or the Windows
Task Scheduler. Scripts may be executed either on the system used in the
laboratory or on a server specifically designated for automation.

Benefits of Network Automation Lab
Network engineers and administrators stand to gain from the establishment
of a network automation lab in more ways than one.
To begin, it enables the development and testing of automation scripts in an
environment that is under controlled conditions. This decreases the
likelihood of errors or disruptions occurring on the production network.
Second, it offers a sandbox environment in which new network
technologies and configurations can be tested before being introduced into
the live network.

Last but not least, it makes it possible to automate routine network tasks,
which in turn reduces the amount of manual labour needed for network
management and maintenance.

Therefore, a network automation lab is a necessary piece of equipment for
network engineers and administrators who have the goal of automating
network tasks in order to reduce the amount of manual labour needed for
network management. Virtual or emulated network devices, a network
emulator, an environment running Python, and automation scripts are the
standard components of the lab. Engineers and administrators can develop
and test automation scripts in a controlled environment by establishing a
network automation lab. This lowers the risk of errors or disruptions
occurring on the production network and allows for the testing of new
network technologies and configurations. Automating routine network tasks
is also made possible by this setup.

To get started with the process of establishing a network automation lab,
select a network emulator that is able to simulate the network environment,
establish a Python environment that contains all of the necessary libraries,
and create automation scripts by making use of Python libraries like
Netmiko, Nornir, or PyEZ. Overall, make use of applications like cron or
the Windows Task Scheduler to automate mundane network tasks and set
up scripts to run at predetermined intervals.

An ideal environment for network engineers and administrators to develop
and test automation scripts, reduce the amount of manual labour required
for network management, and streamline routine network tasks is provided
by a network automation lab.

Install NS3 Network Simulator
NS-3 is an open-source discrete-event network simulator that can be used to
simulate and analyze various network protocols and scenarios. In this
chapter, we will go through the practical steps to install NS-3 network
simulator on Linux.
System Requirements
Before we start the installation, we need to ensure that the system meets the
minimum requirements to run NS-3. The recommended system
requirements are as follows:

Operating System: Linux (Ubuntu, Debian, Fedora, CentOS,
other Linux distribution)
RAM: 2 GB
Processor: Dual-core or higher
Disk space: At least 5 GB free space

Install Required Dependencies
NS-3 has a number of dependencies that need to be installed before we can
install NS-3. The following command will install the required
dependencies:

For Ubuntu/Debian

sudo apt-get update
sudo apt-get install gcc g++ python python-dev mercurial bzr gdb
valgrind gsl-bin libgsl-dev libgsl23 libgslcblas0 python-pygraphviz
python-kiwi python-pygoocanvas python-gnome2 python-rsvg
ipython

For Fedora:

sudo dnf install gcc-c++ python python-devel mercurial bzr gdb
valgrind gsl gsl-devel gsl-static pygtk2-devel pygobject2-devel
graphviz graphviz-gd python-pygraphviz pygtk2 libxml2 libxml2-

devel libxml2-python PyQt4 PyQt4-devel qt4-devel qt4 qt-devel
python-qwt5-qt4 python-qwt5-qt4-devel python-qwt5-qt4-doc
PyQt4-doc PyQt4-qscintilla PyQt4-qscintilla-devel PyQt4-
qscintilla-python PyQt4-devel PyQt4-webkit PyQt4-webkit-devel
qt-webkit-devel qtwebkit-devel gnome-python2-gnomevfs gnome-
python2-gnomevfs-devel gnome-python2-gnomekeyring gnome-
python2-gnomekeyring-devel gnome-python2-extras gnome-
python2-extras-devel gnome-python2-bonobo gnome-python2-
bonobo-devel gnome-python2-canvas gnome-python2-canvas-
devel gnome-python2-gtkhtml2 gnome-python2-gtkhtml2-devel
python-numeric python-numpy python-scipy python-matplotlib
python-matplotlib-doc python-matplotlib-tk python-matplotlib-wx
python-setuptools python-twisted python-zope-interface PyQt4-
qsci-devel PyQt4-qsci

Download NS-3
NS-3 can be downloaded from the official website or cloned from the Git
repository. We will use the Git repository to download NS-3.

Open a terminal and navigate to the directory where you want to download
NS-3. Then, run the following command to clone the Git repository:

git clone https://gitlab.com/nsnam/ns-3-allinone.git

Step 4: Build NS-3
After downloading NS-3, we need to build it. Change the directory to the
NS-3-allinone directory and run the following command:

cd ns-3-allinone
./build.py --enable-examples --enable-tests

The above command will build NS-3 with examples and tests. If you want
to build NS-3 without examples and tests, use the following command:

./build.py

Note: The build process may take some time depending on your system
specifications.

Step 5: Test NS-3
After building NS-3, we can test it by running a sample program. Change
the directory to the NS-3 directory and run the following command:

cd ns-3-dev
./
waf --run hello-simulator

This command will run the "hello-simulator" program, which is a simple
program that creates a simulation and runs it.

If everything is working properly, you should see the following output:
Running "build" task
Running build
No tests defined.
Running "run" task
Running run
Hello Simulator
Simulation completed successfully

Congratulations! You have successfully installed NS-3 on Linux.

Step 6: Using NS-3
To use NS-3, you can start by exploring the example programs that come
with the simulator. The examples are located in the "examples/" directory.

For example, you can run the following command to simulate a simple
point-to-point network:

cd examples/tutorial/first
./waf --run scratch/first

This will create a simulation of a point-to-point network with two nodes,
and the output will show the packets being transmitted between the nodes.

To create your own simulations, you can use the NS-3 API, which provides
a rich set of classes and functions for creating and configuring network
topologies, traffic generators, and protocol stacks.

To conclude, NS-3 is a powerful network simulator that can be used to
simulate and analyze various network scenarios. In this chapter, we went
through the practical steps to install NS-3 on Linux. We also explored how
to test NS-3 and use it to create simple simulations.

Install Python
Python is a popular programming language that is widely used for network
automation. In this chapter, we will go through the practical steps to install
Python for network automation on a Linux system.

Update System
Before installing Python, we need to update the system to ensure that we
have the latest software packages. Open a terminal and run the following
command to update the system:

sudo apt-get update

Install Python
Python is pre-installed on most Linux distributions. However, we can install
the latest version of Python by running the following command:

sudo apt-get install python3

This command will install Python 3, which is the latest version of Python.

Install pip
Pip is a package manager for Python that is used to install and manage
Python packages. To install pip, run the following command:

sudo apt-get install python3-pip

Install paramiko, Netmiko and Nornir
Python has a number of libraries that are specifically designed for network
automation. Some of the popular libraries include:

paramiko: A library for SSH connectivity
Netmiko: A library for network device access over SSH
Nornir: A library for network automation and orchestration

To install these libraries, run the following command:

sudo pip3 install paramiko netmiko nornir

This command will install the paramiko, netmiko, and nornir libraries.

Install Virtual Environment
Virtual environment is a tool that is used to create isolated Python
environments. This is useful when working on multiple projects with
different dependencies. To install virtual environment, run the following
command:

sudo pip3 install virtualenv

Create Virtual Environment
To create a virtual environment, run the following command:

virtualenv myenv

This command will create a virtual environment named "myenv" in the
current directory.

Activate the Virtual Environment
To activate the virtual environment, run the following command:

source myenv/bin/activate

This command will activate the virtual environment, and you will see the
name of the virtual environment in the command prompt.

Install Python Libraries in Virtual Environment
To install Python libraries in the virtual environment, run the following
command:

pip3 install paramiko netmiko nornir

This command will install the paramiko, netmiko, and nornir libraries in the
virtual environment.

Deactivate the Virtual Environment
To deactivate the virtual environment, run the following command:

deactivate

This command will deactivate the virtual environment.

By following these steps, you can start developing network automation
scripts using Python.

Install Visual Studio Code
Visual Studio Code (VS Code) is a popular code editor that supports many
programming languages, including Python. It is a lightweight and versatile
editor that has a rich set of features, such as code highlighting, debugging,
and code completion. In this chapter, we will go through the practical steps
to install and configure VS Code for network automation lab.

Download and Install VS Code
To download and install VS Code,

go to the official VS Code website at
https://code.visualstudio.com/download.
Select the appropriate installer for your operating system and
click the download button.
Once the download is complete, run the installer and follow the
installation wizard.

Install Python Extension
To use VS Code for Python development, we need to install the Python
extension. To install the extension, follow these steps:

Open VS Code.
Click on the Extensions icon on the left-hand side of the screen
(or press Ctrl + Shift + X).
Type "Python" in the search box.
Click the install button for the "Python" extension.
Wait for the installation to complete.

Configure Python Interpreter
Once the Python extension is installed, we need to configure the Python
interpreter that VS Code will use for our Python projects.

To configure the Python interpreter, follow these steps:

Open VS Code.
Click on the Settings icon on the left-hand side of the screen (or
press Ctrl + ,).
Type "Python Path" in the search box.
Click the "Edit in settings.json" button.
Add the following line to the settings.json file:

"python.pythonPath": "/usr/bin/python3"

Note that the path may be different on your system, depending on where
Python is installed.

Create Python Project
To create a Python project in VS Code, follow these steps:

Open VS Code.
Click on the File menu and select "New Folder".
Choose a name for the folder and create it.
Click on the File menu and select "Open Folder".
Select the folder that you just created.
Click on the File menu and select "New File".
Choose a name for the file and save it with a ".py" extension.

Write Python Code
To write Python code in VS Code, follow these steps:

Open the Python file that you created in the previous step.
Start writing your Python code.
Use the VS Code features, such as code highlighting,
debugging, and code completion, to help you write your code.

Run Python Code
To run Python code in VS Code, follow these steps:

Open the Python file that you created.

Click on the Run menu and select "Run Without Debugging"
(or press Ctrl + F5).
VS Code will run the Python code and display the output in the
terminal.

In this section, we went through the practical steps to install and configure
VS Code for network automation lab. By following the above steps, you
can start developing Python scripts for network automation in a
professional and efficient way.

Summary
In this chapter, we discussed the process of setting up a network automation
lab using Python. We first discussed the importance of automation in
network management and the benefits it offers, such as increased efficiency
and reduced errors.

We then talked about the components required for setting up a network
automation lab, such as NS3 emulator, Python, Virtual Environment and VS
Code. We went on to discuss the process of installing the NS3 emulator on
a Linux system and configuring it for use. This involved downloading and
installing the emulator, as well as setting up the necessary dependencies and
environment variables. Next, we talked about installing Python and
configuring it for use with network automation libraries. This involved
setting up a virtual environment, installing the required packages, and
testing the installation.

CHAPTER 4: CONFIGURING
LIBRARIES AND LAB

COMPONENTS

Nornir
The Nornir framework is a Python-based automation tool that was
developed specifically for network automation tasks. It is a free and open-
source library that offers a straightforward and adaptable method of
automating network tasks. This makes it possible for network engineers to
concentrate on the tasks at hand without being distracted by concerns
regarding the underlying infrastructure.

Architecture of Nornir
Architecture of Nornir: The architecture of Nornir is based on the idea of
using plugins in various places. A framework's functionality can be
extended with the help of a small piece of code called a plugin. Plugins can
either add new functionality or replace functionality that already exists.

In Nornir, the following are the three primary categories of plugins:

Inventory Plugin
This includes the hostname of the device, its IP address, and any other
information that may be pertinent. YAML, CSV, and SQL are all formats
that can be used as inventory plugins.

Processor Plugin
A processor plugin's job is to ensure that the tasks assigned to it are carried
out successfully on the devices. The results are provided after a task and a
list of devices have been provided to it. SSH, NETCONF, and REST are a
few examples of processor plugins that are available.

Result Plugin
It then saves the results in a location from which other plugins can quickly
retrieve them in order to process them further. SQLite, JSON, and CSV are
a few examples of different types of result plugins.

The following are the primary elements that make up Nornir's architecture:

A piece of code that carries out a particular operation on a
device is referred to as a task. Any programming language may

be used to create tasks, and a processor plugin is responsible for
carrying out their instructions.
An inventory is a list of all of the different devices that are
currently being managed. You have the option of manually
creating the inventory, or you can use an inventory plugin to do
it automatically.
A processor is the component of a device that is in charge of
putting instructions into action. Nornir comes with a number of
different processor plugins already installed, but users are also
able to create their own bespoke processor plugins.
The output of a task that has been carried out on a device is
referred to as the result of the task. The results are saved in a
result plugin, and other plugins have the ability to access those
results.

Significance of Nornir
Nornir is an essential library for network automation for a number of
reasons, including the following:

Simplifies Network Automation
Nornir is able to simplify network automation because it offers a framework
that is both straightforward and versatile for the automation of network
tasks. Because of this, network engineers are able to concentrate on their
primary responsibilities without being distracted by the infrastructure
beneath them.

Multiple Platforms Are Supported
Nornir is compatible with a wide variety of network platforms, including
those developed by Cisco, Juniper, and Arista. Because of this, it is an
excellent option for businesses that operate in a network environment that is
highly diverse.

Open-Source
Nornir is a library that is an open-source project, which means that it is
freely accessible online and can be modified to fulfil a variety of
requirements. Because of this, it is an excellent option for businesses that

want to automate the tasks associated with their network but do not want to
incur significant costs.

Extensible
Because Nornir's architecture is built around the idea of plugins, it is very
simple to add new functionality to the framework. This feature is known as
"extensibility." Because of this, businesses now have the ability to develop
bespoke plugins that can be used to automate particular network tasks.

Integration with Other Libraries
The fact that Nornir is compatible with other Python libraries, such as
Netmiko and Napalm, makes it much simpler to automate various network-
related tasks. For instance, Netmiko can be used to automate network
devices that are based on SSH, whereas Napalm can be used to automate
network devices that are based on NETCONF.

Centralized Point of Access
Nornir offers a centralised point of access for managing and automating
network tasks. This eliminates the need for network engineers to become
proficient in a wide variety of programming languages and frameworks in
order to automate network processes.

In a simple terms, Nornir is an open-source Python library that was
designed to make network automation more user-friendly by delivering an
adaptable and scalable infrastructure for automating various network-
related tasks. The framework's functionality can be easily extended thanks
to the fact that its architecture is centred on the idea of plugins. Nornir is
compatible with a diverse selection of networks.

Paramiko
A Python library known as Paramiko offers an approach that is both
straightforward and risk-free for automating SSH (Secure Shell)
connections and file transfers. It is a library that is available for free and is
utilised extensively in the field of network automation for a variety of tasks,
including the backing up of configurations, the upgrading of software, and
the execution of commands on remote devices.

Architecture of Paramiko
The Architecture of Paramiko The architecture of Paramiko is centred on
the following two primary components:

SSH Client
An SSH connection with a remote device must be established and kept
active by the SSH client. The SSH client is responsible for both of these
tasks. The paramiko is utilised here. The SSH connection and the paramiko
are both managed by the transport class. Class named SFTPClient that
handles managing file transfers.

SSH Server
The SSH server is in charge of managing any incoming SSH connections,
and its responsibilities include this. The paramiko is utilised here. Class
named ServerInterface that is responsible for handling incoming requests
and the paramiko. The Channel class is used to manage how commands are
carried out.

In order to facilitate communication between SSH clients and servers,
Paramiko offers a number of classes and methods. These are the following:

Establishing and managing SSH connections can be done with
the help of the paramiko.SSHClient class. It makes it possible
to connect to an SSH server, run commands, and transfer files
using the methods that it provides.
The Transport class is responsible for managing the underlying
SSH connection. It offers procedures for establishing a

connection, authenticating both the client and the server, and
encrypting data.
The class, called paramiko.SFTPClient, is utilised during the
process of transferring files over an SSH connection. It offers
functionality for the uploading and downloading of files, the
creation of directories, and the configuration of file
permissions.
There is another class responsible for handling incoming SSH
requests and is referred to as paramiko.ServerInterface. It offers
procedures for handling authentication, carrying out commands,
and managing channels.
And, the last and final class responsible for managing the
execution of commands on remote devices, and its name is
paramiko.Channel. It offers methods for transmitting and
receiving data, as well as managing the standard
input/output/error streams and controlling the execution of the
command.

Significance of Paramiko
There are many reasons why this Paramiko library is so important for
network automation:

Secure
Automate SSH connections and file transfers in a secure manner with
Paramiko, which offers an encrypted method for doing so. It employs
robust algorithms for encryption and provides means for safely managing
authentication and encryption keys.

Lightweight
The Paramiko library is a lightweight option because it has a small footprint
and does not rely on a large number of other packages for its functionality.
Because of this, it can be easily installed and utilised in a diverse collection
of network automation settings.

Cross-platform

Paramiko is a library that can be used on a variety of different operating
systems, including Windows, Linux, and macOS. It is considered to be
cross-platform. Because of this, it is an excellent option for businesses that
operate in a network environment that is highly diverse.

East-to-use
Simple and straightforward application programming interface (API)
offered by Paramiko for automating SSH connections and file transfers.
Because of this, it is much simpler for network engineers to begin
automating their networks without having to first become proficient in a
variety of difficult programming languages or frameworks.

Configurable
The architecture of Paramiko was built with configurability and
extensibility in mind from the start. This makes it possible for companies to
personalise the library to meet the requirements of their particular
operations, such as developing bespoke authentication procedures or
integrating with additional network automation tools.

Integration with Other Libraries
Other Python libraries, such as Fabric and Ansible, can be used with
Paramiko thanks to its integration with those libraries. Because these
libraries provide additional functionality for managing SSH connections
and executing commands on remote devices, the process of automating
network tasks is facilitated as a result, making the process simpler.

To sum up, Paramiko is a small, safe, and platform-independent Python
library that offers an easy-to-use application programming interface (API)
for scripting SSH connections and file transfers. Because its architecture is
intended to be both customizable and extensible, it is an excellent option for
businesses that need to automate their complex networks and has been
designed to do so. Because of its intuitive interface, extensive
configurability, and seamless compatibility with a wide variety of libraries,
Paramiko has emerged as a pivotal tool for various network automation
endeavours.

Netmiko
Python's Netmiko library is a useful tool for streamlining network
automation because it offers a unified interface to network devices that can
be accessed via secure shell connections. It is constructed on top of
Paramiko and is compatible with a wide variety of network devices,
including those manufactured by Cisco, Juniper, Arista, and many others.
For network automation, Netmiko provides a standardised application
programming interface (API) that is simple to work with and abstracts away
the complexity of interacting with various devices.

Architecture of Netmiko
The architecture of Netmiko is centred on three primary components, which
are as follows:

Driver for Device
The driver for the device is in charge of managing the communication that
takes place between Netmiko and the network device. It is a Python class
that implements a set of methods for sending and receiving commands,
parsing output, and handling errors. These methods can be found in the
class's documentation.

Connection Handler
The connection handler is in charge of managing the SSH connection to the
network device. This responsibility falls on the connection handler. It does
this by establishing and maintaining the SSH connection with the help of
the Paramiko library, which also provides methods for logging in and out of
the SSH session as well as managing it.

Command Handler
The command handler is in charge of managing the execution of commands
on the network device, and its responsibilities include this oversight. It does
this by utilising the connection handler so that commands can be sent to the
device and the output can be received. It also provides methods for handling
errors and parsing the output.

Netmiko gives users access to a variety of device drivers for a wide variety
of network devices, such as Cisco IOS, Cisco ASA, Juniper JunOS, Arista
EOS, and a great deal more besides. Each device driver is responsible for
implementing a set of methods that are unique to the device being driven.
These methods may include sending and receiving commands, parsing
output, and handling errors.

Significance of Netmiko
The Netmiko library is an important component of network automation for
following features:

Unified Interface to Network Devices
Netmiko is able to simplify network automation by providing a unified
interface to SSH connections for network devices. Automating tasks for
network engineers, such as configuring devices, backing up configurations,
and monitoring network performance, is made simpler as a result of this.

Supports Wide Variety of Devices
Netmiko is compatible with a wide variety of network devices, including
those made by Cisco, Juniper, and Arista, amongst others. Because of this,
it is an excellent option for businesses that operate in a network
environment that is highly diverse.
Easy API Integration
Interacting with network devices is made easy with Netmiko's
straightforward and well-documented application programming interface
(API). Because of this, it is much simpler for network engineers to begin
automating their networks without having to first become proficient in a
variety of difficult programming languages or frameworks.

Configurable
The architecture of Netmiko was built with configurability and extensibility
in mind from the start. This gives companies the ability to modify the
library to meet the requirements of their particular projects, such as
developing bespoke device drivers or integrating with a variety of other
network automation tools.

Cross-platform
The Netmiko library is a cross-platform library, which means that it is
compatible with a wide variety of operating systems. These operating
systems include Windows, Linux, and macOS. Because of this, it is an
excellent option for businesses that operate in a network environment that is
highly diverse.

Supports Concurrent Connections
Netmiko supports concurrent connections to multiple devices. This makes it
possible to automate tasks across a large number of devices simultaneously,
which improves the efficiency of network automation tasks and reduces the
amount of time required for those tasks.

To just summarize its importance, this is a Python library that offers a
unified interface to network devices by means of secure shell connections.
This helps to simplify the process of automating networks. Because its
architecture is intended to be both customizable and extensible, it is an
excellent option for businesses that need to automate their complex
networks and has been designed to do so. Because of its user-friendliness,
extensive configurability, and compatibility with a wide variety of devices,
Netmiko is an essential tool for the completion of network automation
tasks.

PyEZ
PyEZ is a Python library that makes network automation more
straightforward for Juniper Networks's hardware. It offers a high-level
application programming interface (API) for interacting with Junos OS,
which is the name of the operating system that is used by Juniper Networks
devices. PyEZ is a Python library that provides low-level access to the
Junos OS command line interface (CLI), XML application programming
interface (API), and NETCONF protocol. PyEZ is built on top of Junos
PyEZ.

Architecture of PyEZ
The architecture of PyEZ is centred on four primary components, which are
as follows:

Device
The object that is responsible for representing a Juniper Networks device in
PyEZ is referred to as the device. It provides methods for connecting to the
device, executing commands, retrieving and configuring the device's
configuration, and additional functionality.

RPC
RPC stands for "Remote Procedure Call," and it is a protocol that enables
applications to communicate with Junos OS by sending and receiving XML
messages. RPC is also known as "Remote Procedure Call." PyEZ is an
application programming interface (API) that simplifies the process of
retrieving and configuring device information by providing a high-level
interface for communicating with Junos OS via RPC.

Tables
Tables are used in PyEZ to represent structured data that is retrieved from
Junos OS. Tables are used to organise the data. PyEZ offers a collection of
predefined tables that can be used to retrieve a variety of different types of
data, including interface statistics, routing tables, and more. Users are also
able to define their very own bespoke tables, which can be used to retrieve
particular information from the Junos OS.

Events
Events are used in PyEZ to monitor and react to changes in the state of a
Juniper Networks device. Events are used to monitor and react to changes.
PyEZ offers a collection of predefined events for monitoring a wide variety
of events, including but not limited to changes in interface state, BGP route
changes, and more. In addition, users have the ability to define their very
own bespoke events for monitoring specific OS changes in Junos.

Significance of PyEZ
PyEZ is an essential library for network automation for a number of
reasons, including the following:

Simplifies Network Automation
PyEZ is able to simplify network automation because it provides a high-
level API for interacting with Junos OS. Network engineers will find it
much simpler to automate tasks like configuring devices, retrieving
information, and monitoring the performance of the network as a result of
this.

Supports JunosOS
PyEZ was developed specifically for Juniper Networks devices that are
operating under the Junos operating system, and it offers support for that
operating system. Because of this, it is an excellent option for businesses
that already utilise Juniper Networks as their infrastructure provider.

Simple API
PyEZ offers a straightforward and user-friendly application programming
interface (API) for interacting with Junos OS. Because of this, it is much
simpler for network engineers to begin automating their networks without
having to first become proficient in a variety of difficult programming
languages or frameworks.

Configurable
The architecture of PyEZ was built with configurability and extensibility in
mind from the start. Because of this, organisations are able to tailor the

library to meet their particular requirements, such as developing bespoke
events or tables.

Cross-platform
PyEZ is a cross-platform library, which means that it is compatible with a
wide variety of operating systems, such as Windows, Linux, and macOS.
Because of this, it is an excellent option for businesses that operate in a
network environment that is highly diverse.

Multiple Protocols
PyEZ is able to interact with Junos OS using a variety of protocols,
including NETCONF, XML API, and SSH. This feature is made possible
by PyEZ's support for multiple protocols. As a result, it is now feasible to
automate tasks by making use of the protocol that is most suited to the
particular use case.

In a nutshell, PyEZ is a Python library that, when installed on Juniper
Networks devices running Junos OS, makes network automation more
straightforward. Because its architecture is intended to be both
customizable and extensible, it is an excellent option for businesses that
need to automate their complex networks and has been designed to do so.
PyEZ is an important tool for network automation tasks in environments
that use Juniper Networks because of how easy it is to use, the options it
provides for customization, and the support it provides for multiple
protocols.

Configure nornir, paramiko, netmiko and
pyEZ
Installing and Configuring Nornir
To configure Nornir, we need to install the Nornir library and create an
inventory file that contains the details of the devices we want to automate.

Following are the steps:

Install Nornir using pip:

pip install nornir

Create an inventory file in YAML format. The inventory file
should contain the hostname, IP address, and any other details
required to connect to the device. Following is an example:

hosts:
 router1:
 hostname: 192.168.1.1
 platform: ios
 groups:
 - routers
 switch1:
 hostname: 192.168.1.2
 platform: ios
 groups:
 - switches

Create a Python file that imports Nornir and runs an automation
task. Following is an example:

from nornir import InitNornir

nr = InitNornir(config_file="config.yaml")
def my_task(task):
 # Code for the automation task goes here
 pass
results = nr.run(task=my_task)

Installing and Configuring Paramiko
To configure Paramiko, we need to install the Paramiko library and create a
Python script that uses Paramiko to connect to a network device.

Following are the steps:

Install Paramiko using pip:

pip install paramiko

Create a Python script that imports Paramiko and connects to a
network device using SSH. Following is an example:

import paramiko
ssh = paramiko.SSHClient()
ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy())
ssh.connect('192.168.1.1', username='username',
password='password')
stdin, stdout, stderr = ssh.exec_command('show version')
output = stdout.read().decode('utf-8')
print(output)
ssh.close()

Installing and Configuring Netmiko
To configure Netmiko, we need to install the Netmiko library and create a
Python script that uses Netmiko to connect to a network device.

Following are the steps:

Install Netmiko using pip:

pip install netmiko

Create a Python script that imports Netmiko and connects to a
network device using SSH. Following is an example:

from netmiko import ConnectHandler
device = {
 'device_type': 'cisco_ios',
 'ip': '192.168.1.1',
 'username': 'username',
 'password': 'password'
}
ssh = ConnectHandler(**device)
output = ssh.send_command('show version')
print(output)
ssh.disconnect()

Installing and Configuring PyEZ
To configure PyEZ, we need to install the Juniper PyEZ library and create a
Python script that uses PyEZ to connect to a Junos device.

Following are the steps:

Install PyEZ using pip:

pip install junos-eznc

Create a Python script that imports PyEZ and connects to a
Junos device using NETCONF. Following is an example:

from jnpr.junos import Device
from jnpr.junos.utils.config import Config

device = Device(host='192.168.1.1', user='username',
password='password')
device.open()
config = Config(device)
config.lock()
config.load('set system host-name myrouter', format='set')
config.commit()
config.unlock()
device.close()

Overall, configuring Nornir, Paramiko, Netmiko, and PyEZ for network
automation involves installing the required libraries and creating Python
scripts that use these libraries to connect to network devices and perform
automation tasks. Once these libraries are properly configured, network
engineers can automate repetitive and time-consuming network tasks,
improving network efficiency and reducing the risk of errors.

Configure Ports
It is the responsibility of network engineers to ensure that all network
devices, such as routers and switches, are correctly configured so that they
can facilitate communication between different devices that are connected
to the same network. The configuration of ports on these devices is an
essential part of a network engineer's job and is one of their primary
responsibilities. The act of connecting a device to a network is the
responsibility of a port, which is also referred to as an interface. It is
possible to implement it either physically, such as with an Ethernet port, or
logically, such as with a virtual interface. Both methods are valid.

It is typical for a network engineer to have to go through a series of steps
before successfully configuring a port. These steps can differ depending on
the particular device and the vendor, but some of the most common steps
are as follows:

The first thing that must be done in order to configure a port is
to locate the port in question and determine what changes need
to be made to it. Finding the physical location of the port on the
device or determining the logical interface that needs to be
configured may be required to accomplish this task.
Once the port has been identified, the network engineer will
typically adjust the settings for the port's speed and duplex.
These adjustments are typically made after the network
engineer has finished identifying the port. These settings
determine whether the port communicates in a half-duplex or
full-duplex mode, as well as the maximum data transfer speed
that can be achieved when sending and receiving data through
the port.
The process of configuring VLAN membership is supported by
a wide variety of network devices. Virtual Local Area Networks
(VLANs) are used to divide the network into logical groups and
can be configured by the user. It is possible that the network
engineer will have to configure the port so that it is a member
of a specific VLAN.

Access control lists (ACLs) are used to control which devices
on a network can communicate with each other. These lists are
used to determine which devices can communicate with each
other. It's possible that the network engineer will need to
configure ACLs on the port in order to restrict or allow traffic
depending on the situation.
Quality of Service (QoS) settings are used to give certain types
of network traffic, like voice or video traffic, higher priority
than other types of network traffic on the network. It's possible
that the network engineer will have to configure the QoS
settings on the port in order to make sure that the most
important traffic gets priority over the less important traffic.
Once the port has been configured, the network engineer will
typically test the configuration to ensure that it is functioning as
expected once it has been applied. In order to accomplish this,
you may need to send test traffic through the port and then
monitor the results.

It's possible that different kinds of network devices, like routers and
switches, have a variety of port configurations available to them.
Additionally, the configuration options that are available may vary
depending on the vendor. However, a network engineer can normally
configure a port so that it satisfies the requirements of the network and
ensures that devices can communicate with one another in a dependable
manner if they follow the steps outlined above.

Configuring Ports on Switches
Switches are the types of devices that are used in local area networks
(LANs) and are responsible for connecting multiple devices to one another.
Devices on the network are able to communicate with one another thanks to
these switches, which serve as the network's "central hub."

During the process of configuring ports on switches, there are multiple
steps that must be taken to ensure that the switch is configured correctly and
optimised for the requirements of the network. When configuring ports on
switches, the following steps are typically taken in most cases:

Get in touch with the CLI (Command-Line Interface) (CLI):
Accessing the switch's command-line interface is the very first
thing to do when configuring a switch's ports (CLI). This can be
accomplished in a number of different ways, such as by using
the console, establishing a remote connection through Telnet or
SSH, or utilising the web interface.

Find out which port it is: After gaining access to the CLI, the
next step is to locate the port that requires configuration and
perform those settings. Either the port's name or its number can
be used to accomplish this task. Take Cisco switches as an
example; the names of their ports are typically formatted as
follows: FastEthernet, GigabitEthernet, or TenGigabitEthernet,
followed by the port number.

Adjust the Velocity and the Duplex Mode: Following the
successful identification of the port, the next step is to use the
"speed" and "duplex" commands, respectively, to configure the
port's speed and duplex mode. The speed of the port, which is
typically measured in megabits per second (Mbps) or gigabits
per second, can be changed with the help of the speed command
(Gbps). It is possible to set the port's duplex mode using the
duplex command. The port's duplex mode can be set to either
full-duplex or half-duplex.

Administrators of a network are able to optimise a switch to meet the
particular requirements of the network by configuring the speed and duplex
mode of each port on the switch. For instance, if the network calls for the
transfer of data at a high rate, the port's speed can be increased to a higher
value, such as 10 gigabits per second (Gbps). In addition, if the network
requires connections with low latency and high bandwidth, the full-duplex
mode can be enabled to permit simultaneous transmission and reception of
data. This is possible when the mode is enabled.

Let us look at the below example:

switch(config)# interface gigabitethernet 0/1

switch(config-if)# speed 1000
switch(config-if)# duplex full

Configure VLAN membership for the port using the
"switchport mode" and "switchport access vlan" commands. Let
us look at the below example:

switch(config)# interface gigabitethernet 0/1
switch(config-if)# switchport mode access
switch(config-if)# switchport access vlan 10

Configure ACLs to control traffic flowing through the port
using the "ip access-group" command. Let us look at the below
example:

switch(config)# access-list 100 permit tcp any any eq 80
switch(config)# interface gigabitethernet 0/1
switch(config-if)# ip access-group 100 in

Configuring Ports on Routers
Routers are devices in a network that perform the function of a gateway
between two or more distinct networks. They are responsible for directing
traffic between the various networks they are connected to and are used to
connect multiple devices that belong to different networks.

The essential task of configuring the ports on routers is what enables
network administrators to manage the flow of traffic through the network.
This involves several steps, which are broken down into the following
categories:

Access the CLI of the router: It is necessary for network
administrators to access the router's Command Line Interface in
order to configure the ports on the router (CLI). This can either
be accomplished through a direct connection to the console or
through a remote connection using protocols like Telnet or

SSH, or through the use of a web interface. Administrators are
granted the ability to interact directly with the router's
configuration settings when they have access to the CLI.
Identify the port that needs to be configured: After gaining
access to the CLI, the next step is to locate the port that requires
configuration and perform those settings. In the majority of
routers, ports can either be named or numbered to identify
them. For instance, the names of the ports on Cisco routers
begin with either FastEthernet, GigabitEthernet, or
TenGigabitEthernet, and are then followed by the port number.

Identifying the port that needs to be configured is the first step in the
process of configuring its speed and duplex mode. After that, the next step
is to configure the port's speed. The commands "speed" and "duplex" are
used to accomplish this goal. The "speed" command is used to set the rate at
which data is transmitted on the port, whereas the "duplex" command is
used to set the mode in which the port operates in duplex mode. Either
"half-duplex" or "full-duplex" can be used to describe the duplex mode. In
full-duplex mode, data can be transmitted in both directions at the same
time, whereas in half-duplex mode, data can only be transmitted in one
direction at a time in this mode.

When the port speed and duplex mode have been properly configured, the
router will be in a better position to effectively manage the flow of traffic
through the network. This may help to improve network performance and
reduce the likelihood of network congestion occurring.

Let us look at the below example:

router(config)# interface gigabitethernet 0/1
router(config-if)# speed 1000
router(config-if)# duplex full

Configure IP addresses on the port using the "ip address"
command. Let us look at the below example:

router(config)# interface gigabitethernet 0/1

router(config-if)# ip address 192.168.1.1 255.255.255.0

Configure routing protocols for the port using the "router" command. Let us
look at the below example:

router(config)# router ospf 1
router(config-router)# network 192.168.1.0 0.0.0.255 area 0

Accessing the device's command line interface (CLI), locating the port that
needs to be configured, and configuring various parameters including
speed, duplex, VLAN membership, access control lists, and routing
protocols are the steps that make up the process of configuring ports on
network devices. These configurations are unique to the vendor, and they
can change depending on the device in use and the version of software
installed. For more detailed instructions, network engineers should either
consult the device's documentation or get in touch with the manufacturer.

Configure Hosts
In order to successfully set up a network, one of the most important steps is
to configure the hosts on the network. Assigning IP addresses, subnet
masks, and default gateways to each host is a necessary step in the process.
Because the network is configured in this manner, hosts are able to
communicate with other devices on the network and access the internet.

IP addresses are one-of-a-kind identifiers that are given to every device that
is connected to a network. It makes it possible for different devices to
communicate with one another over a network. The subnet mask both
establishes the overall size of the network as well as partitions it into
several more manageable sub-networks. The IP address of the router that is
used to connect a local area network to the wider internet is known as the
default gateway.

The process of configuring hosts differs from one operating system to
another and also depends on the configuration of the network. The
following are some of the most common steps for configuring hosts on
operating systems running Windows and Linux:

Configuring Hosts on Windows
Configuring hosts on Windows is an important task that is essential for
network connectivity. A host is a computer or device that is connected to a
network, and its IP address is used to identify and communicate with other
devices on the same network.

The process of configuring hosts on Windows involves several steps, which
are outlined below:

Step 1: Open the Control Panel and select "Network and
Sharing Center". The first step in configuring hosts on
Windows is to open the Control Panel and select "Network and
Sharing Center." The Control Panel is a central location in
Windows where users can configure and manage various
settings on their computer. The Network and Sharing Center is
a tool in Windows that provides an overview of network

connections and enables users to manage network-related
settings.
Step 2: Click on "Change adapter settings" on the left-hand side
of the screen. After opening the Network and Sharing Center,
the next step is to click on "Change adapter settings" on the left-
hand side of the screen. This will display a list of network
adapters that are installed on the computer.
Step 3: Right-click on the network adapter to be configured and
select "Properties". Once the list of network adapters is
displayed, the user should right-click on the network adapter
that they wish to configure and select "Properties." This will
display the properties dialog box for the selected network
adapter.
Step 4: Double-click on "Internet Protocol Version 4
(TCP/IPv4)" in the list of network protocols. In the properties
dialog box for the selected network adapter, the user should
double-click on "Internet Protocol Version 4 (TCP/IPv4)" in the
list of network protocols. This will display the properties dialog
box for the IPv4 protocol.
Step 5: Select "Use the following IP address" and enter the IP
address, subnet mask, and default gateway for the host. In the
properties dialog box for the IPv4 protocol, the user should
select "Use the following IP address" and enter the IP address,
subnet mask, and default gateway for the host. The IP address is
a unique identifier for the host on the network, and the subnet
mask defines the network portion and the host portion of the IP
address. The default gateway is the IP address of the router or
gateway that is used to connect to other networks.
Step 6: Click "OK" to save the configuration. Finally, the user
should click "OK" to save the configuration. Once the
configuration is saved, the host will be able to communicate
with other devices on the network using the specified IP address
and network settings.

In summary, configuring hosts on Windows involves opening the Control
Panel, selecting "Network and Sharing Center," clicking on "Change

adapter settings," right-clicking on the network adapter to be configured
and selecting "Properties," double-clicking on "Internet Protocol Version 4
(TCP/IPv4)" in the list of network protocols, selecting "Use the following
IP address" and entering the IP address, subnet mask, and default gateway
for the host, and clicking "OK" to save the configuration.

Configuring Hosts on Linux
Configuring hosts on Linux involves setting up network connectivity on a
computer or device running the Linux operating system. The process of
configuring hosts on Linux can vary depending on the specific Linux
distribution being used, but the general steps involved are as follows:

The first step in configuring hosts on Linux is to open a
terminal and log in as the root user. The root user has
administrative privileges and can perform system-level tasks,
such as configuring network interfaces.
The next step is to locate and edit the network interface
configuration file for the host. The location of this file can vary
depending on the Linux distribution being used. For example,
in Ubuntu, the file is located at /etc/network/interfaces.
To edit the configuration file, you can use a text editor such as
vi or nano. For example, to edit the file using nano, you can run
the following command:

sudo nano /etc/network/interfaces

This will open the configuration file in the nano text editor. Add
the following lines to the configuration file:

auto eth0
iface eth0 inet static
address 192.168.1.100
netmask 255.255.255.0
gateway 192.168.1.1

Save the configuration file and exit.

Restart the networking service to apply the changes. The
command to restart the networking service varies depending on
the Linux distribution. For example, in Ubuntu, the command
is:

sudo service networking restart

To provide a brief overview, the process of configuring hosts on a network
involves giving each host an IP address, a subnet mask, and a default
gateway. The configuration of hosts can change depending not only on the
operating system but also on the configuration of the network. When
attempting to correctly configure hosts, network engineers should first
consult the documentation provided by both the operating system and the
network.

Configure Servers
Configuring servers involves several steps, including installing the server
operating system, configuring network settings, and installing and
configuring server software.

Following are the general steps for configuring servers:

Installing Server Operating System
The first step in configuring a server is to install the server operating
system. The steps involved in installing the server operating system vary
depending on the server hardware and the operating system being used.

Configuring Network Settings
After installing the operating system, the next step is to configure the
network settings. This includes assigning a static IP address, subnet mask,
and default gateway. In addition, DNS servers may also need to be
configured. The exact steps for configuring network settings depend on the
server operating system being used.

Installing and Configuring Server Software
After configuring the network settings, the next step is to install and
configure server software. The type of server software that needs to be
installed depends on the purpose of the server. For example, a web server
requires the installation of a web server software such as Apache or Nginx.

Following are the specific steps for configuring some commonly used
servers:

Configuring a Web Server
Configuring a web server involves the following steps:

Install a web server software such as Apache or Nginx.
Configure the web server by editing the configuration files.
This involves setting up the web server to serve content,

defining virtual hosts, configuring SSL certificates, and setting
up authentication and access control.
Test the web server by accessing it from a web browser.

Configuring a File Server
Configuring a file server involves the following steps:

Install file server software such as Samba or NFS.
Configure the file server by editing the configuration files. This
involves setting up the file server to share directories and files,
defining access control, and configuring authentication.
Test the file server by accessing it from a client computer.

Configuring a Database Server
Configuring a database server involves the following steps:

Install database server software such as MySQL or
PostgreSQL.
Configure the database server by editing the configuration files.
This involves setting up the database server to listen on the
appropriate network interface, defining databases and tables,
and configuring authentication and access control.
Test the database server by accessing it from a client computer.

Therefore, configuring servers involves installing the server operating
system, configuring network settings, and installing and configuring server
software. The specific steps for configuring servers depend on the purpose
of the server and the server software being used. Network engineers should
consult the documentation for the server operating system and server
software to configure servers correctly.

Configure Network Encryption
Configuring network encryption is an essential part of securing network
communication. It involves encrypting data sent over the network to
prevent unauthorized access to sensitive information.

There are several ways to configure network encryption, including the
following:

SSL/TLS
SSL/TLS is a popular method for securing network communication. It
works by encrypting data in transit using a certificate-based system.
SSL/TLS requires the installation of a certificate on both the server and
client. When a client connects to a server using SSL/TLS, the server sends
its certificate to the client. The client verifies the certificate and establishes
a secure connection with the server. All data transmitted between the client
and server is encrypted using the SSL/TLS protocol.

To configure SSL/TLS, you will need to obtain and install a certificate on
the server. This can be done using a certificate authority (CA) or a self-
signed certificate. Once the certificate is installed, you will need to
configure your server software to use SSL/TLS.

IPsec
IPsec is another method for securing network communication. It works by
encrypting data at the IP layer of the network stack. IPsec requires the
installation of a security policy on both the client and server. When a client
connects to a server using IPsec, the client and server negotiate a security
policy that defines how the data will be encrypted. All data transmitted
between the client and server is encrypted using the security policy.

To configure IPsec, you will need to install and configure an IPsec
implementation on both the client and server. IPsec implementations
include strongSwan, OpenSwan, and LibreSwan.

SSH

SSH is a secure protocol used for remote access to servers. It works by
encrypting data sent between the client and server using public key
encryption. SSH requires the installation of an SSH server on the server and
an SSH client on the client. When a client connects to a server using SSH,
the client sends its public key to the server. The server verifies the public
key and establishes a secure connection with the client. All data transmitted
between the client and server is encrypted using SSH.
To configure SSH, you will need to install and configure an SSH server on
the server and an SSH client on the client. SSH implementations include
OpenSSH and PuTTY.

VPN
VPN is a method for securing network communication by creating a secure
tunnel between the client and server. VPN requires the installation of VPN
software on both the client and server. When a client connects to a server
using VPN, the client and server negotiate a secure tunnel through which all
data is transmitted. All data transmitted between the client and server is
encrypted using the VPN protocol.

To configure VPN, you will need to install and configure VPN software on
both the client and server. VPN implementations include OpenVPN, Cisco
AnyConnect, and Fortinet FortiClient.

To summarize, configuring network encryption involves encrypting data
sent over the network to prevent unauthorized access to sensitive
information. There are several methods for configuring network encryption,
including SSL/TLS, IPsec, SSH, and VPN. Network engineers should
choose the appropriate method for their network and configure it correctly
to ensure the security of their network communication.

Testing the Network Automation Environment
Once you have set up your network automation lab and configured NS3
emulator, libraries like Nornir, Paramiko, Netmiko, and PyEZ, ports, hosts,
and servers, you need to ensure that everything is working as expected.
There are several ways to test your network automation lab to verify that it
is configured properly, including the following:

Test Connectivity between Hosts
The first step in testing network automation lab is to ensure that there is
connectivity between all the hosts in the network. This is an important step
as it lays the foundation for any further testing or automation tasks. The
ping command is a useful tool for this purpose.

The ping command is a utility that sends a small packet of data to a
destination host and waits for a response. The command can be run from
the command line interface of any host in the network. It is a simple yet
effective way to test connectivity between hosts. To use the ping command,
the user must specify the destination host’s IP address or hostname. The
command then sends an ICMP (Internet Control Message Protocol) echo
request packet to the destination host. If the destination host receives the
packet, it responds with an ICMP echo reply packet. The time taken for the
packet to travel to the destination host and back is measured and displayed
as the round trip time (RTT).

If the host responds with an ICMP echo reply packet, it indicates that
connectivity is working properly between the two hosts. If the host does not
respond, it may indicate a problem with the network configuration. In
addition to testing connectivity between hosts, the ping command can also
be used to test other aspects of the network. For example, it can be used to
test the network’s response time or to troubleshoot network issues such as
packet loss or high latency.

Ping is a commonly used tool in network troubleshooting and testing. It is a
simple yet effective way to verify connectivity and can help to identify
network issues. It is also a valuable tool for network automation, as it can

be used to automate network testing tasks and ensure that the network is
functioning properly.

To test connectivity between hosts, you can use the following command:

ping <ip address or hostname>

For example, if you want to test connectivity between host1 and host2, you
can use the following command:

ping host2

Test Port Connectivity
After verifying that there is network connectivity between hosts, the next
step is to test port connectivity. Port connectivity tests whether a specific
port on a remote host is open and accepting connections. This is an
important step in troubleshooting network connectivity issues or verifying
that a service is running on a particular port.

There are different ways to test port connectivity, but two common methods
are telnet and netcat.

The telnet command is a client-server protocol that connects to a remote
host on a specific port and displays any response from the server. The telnet
command is available on most operating systems and can be used to test
port connectivity on a remote host. To use the telnet command, you need to
know the IP address or hostname of the remote host and the port number
you want to connect to. For example, to test if port 80 is open on a web
server with IP address 192.168.0.1, you would use the following command:

telnet 192.168.0.1 80

If the port is open and accepting connections, you should see a response
from the server indicating that the connection was successful. If the port is
closed or not accepting connections, you will receive an error message.

The netcat command is another tool that can be used to test port
connectivity. Unlike telnet, netcat allows you to send and receive data over
the network. The netcat command is available on Linux and other Unix-like

operating systems. To use netcat, you need to know the IP address or
hostname of the remote host and the port number you want to connect to.
For example, to test if port 22 is open on a remote server with IP address
192.168.0.2, you would use the following command:

nc -vz 192.168.0.2 22

The -v option makes the output more verbose, and the -z option makes
netcat scan for listening daemons, without sending any data. The output of
this command will indicate whether the port is open or not.

To test port connectivity using the telnet command, use the following
command:

telnet <ip address or hostname> <port>

For example, if you want to test port 80 on host2, you can use the following
command:

telnet host2 80

To test port connectivity using the netcat command, use the following
command:

nc -vz <ip address or hostname> <port>

For example, if you want to test port 80 on host2, you can use the following
command:

nc -vz host2 80

Test SSH Connectivity
SSH (Secure Shell) is a secure protocol used for remote login and other
secure network services over an unsecured network. If you have configured
SSH on your network, you can test SSH connectivity using the ssh
command. The ssh command connects to a host using SSH and opens a
shell on the remote host. This enables you to access the command-line
interface of the remote host and execute commands as if you were
physically present at the remote host.

To test SSH connectivity using the ssh command, you need to have SSH
client software installed on your local computer. Most modern operating
systems, including Linux, macOS, and Windows, have SSH client software
pre-installed, but if not, you can install it easily.

To test SSH connectivity, use the following command:

ssh <username>@<ip address or hostname>

For example, if you want to test SSH connectivity to host2 as the user
"user1", you can use the following command:

ssh user1@host2

Test Network Automation Libraries
To test your network automation libraries, you can write a simple script that
performs a basic task, such as retrieving the interface configuration of a
network device. You can use the library documentation to determine the
correct syntax and commands to use.

For example, to test the PyEZ library, you can write a script that retrieves
the interface configuration of a Juniper device. The script might look
something like this:

from jnpr.junos import Device
dev = Device(host=<ip address or hostname>, user=<username>,
password=<password>)
dev.open()
interfaces = dev.rpc.get_interface_information()
print(interfaces)
dev.close()

Test NS3 Emulator
To test the NS3 emulator, you can create a simple network topology and run
a simulation. You can use the NS3 documentation to determine the correct
syntax and commands to use.

For example, to test the NS3 emulator, you can create a simple network
topology with two nodes connected by a point-to-point link.

The topology might look something like this:

Import NS3 modules
import ns.applications
import ns.core
import ns.internet
import ns.network

Create nodes
node1 = ns.network.Node()
node2 = ns.network.Node()

Create point-to-point link
pointToPoint = ns.network.PointToPointHelper()
pointToPoint.SetDeviceAttribute("DataRate",
ns.core.StringValue("5Mbps"))
pointToPoint.SetChannelAttribute("Delay",
ns.core.StringValue("2ms"))

Create network interfaces
device1 = pointToPoint.Install(node1)
device2 = pointToPoint.Install(node2)
address1 = ns.internet.Ipv4AddressHelper()
address1.SetBase(ns.network.Ipv4Address("10.1.1.0"),
ns.network.Ipv4Mask("255.255.255.0"))
address2 = ns.internet.Ipv4AddressHelper()
address2.SetBase(ns.network.Ipv4Address("10.1.2.0"),
ns.network.Ipv4Mask("255.255.255.0"))

Assign IP addresses to interfaces
interface1 = address1.Assign(device1)
interface2 = address2.Assign(device2)

Create TCP sender and receiver applications
packetSinkHelper =
ns.applications.PacketSinkHelper("ns3::TcpSocketFactory",
ns.network.InetSocketAddress(ns.network.Ipv4Address.GetAny(),
9))
sink = packetSinkHelper.Install(node2)
onOffHelper =
ns.applications.OnOffHelper("ns3::TcpSocketFactory",
ns.network.InetSocketAddress(interface2.GetAddress(0), 9))
onOffHelper.SetAttribute("OnTime",
ns.core.StringValue("ns3::ConstantRandomVariable[Constant=1]")
)
onOffHelper.SetAttribute("OffTime",
ns.core.StringValue("ns3::ConstantRandomVariable[Constant=0]")
)
onOffHelper.SetAttribute("DataRate",
ns.network.DataRateValue(ns.network.DataRate("5Mbps")))
onOffHelper.SetAttribute("PacketSize",
ns.core.UintegerValue(1000))
source = onOffHelper.Install(node1)

Create simulation object and run
simulator = ns.core.Simulator()
simulator.Schedule(ns.core.Seconds(1.0), &source.Start)
simulator.Schedule(ns.core.Seconds(10.0), &source.Stop)
simulator.Run()

This script creates a point-to-point link between two nodes, assigns IP
addresses to the interfaces, and creates TCP sender and receiver
applications. The simulation runs for 10 seconds and then stops.

Test Network Encryption

You can put the security of your network to the test by capturing and
examining network traffic with the help of the Wireshark network analyzer
tool. If you know the key or passphrase, you can use Wireshark to decrypt
traffic that is encrypted. Run a network application on the network that
makes use of encryption, such as SSH or HTTPS, and then use Wireshark
to record the traffic generated by the application. This will allow you to test
network encryption. After that, you'll be able to conduct an investigation
into the traffic to ensure that the encrypted data is hidden from view.

Testing your network automation lab is a crucial step in making certain that
everything is operating as it should be. You are able to test connectivity
between hosts, connectivity between ports, connectivity between SSH,
network automation libraries, connectivity with the NS3 emulator, and
encryption on the network. You will be able to pinpoint any configuration
problems with your network automation lab if you test each individual
component of the lab. This will also ensure that the lab is set up correctly to
meet your requirements.

Summary
In this chapter, we discussed about the components required for setting up a
network automation lab, including libraries such as Nornir, Paramiko,
Netmiko, and PyEZ, as well as virtual machines and network devices. We
discussed the process of configuring ports, hosts, and servers in the network
automation lab. This involved defining network topologies, assigning IP
addresses, and configuring applications such as TCP sender and receiver.

Finally, we talked about the importance of testing the network automation
lab to ensure that it is working properly. This involved testing connectivity
between hosts, port connectivity, SSH connectivity, network automation
libraries, NS3 emulator, and network encryption. We also discussed using
tools such as Wireshark to capture and analyze network traffic to test
network encryption. Overall, setting up a network automation lab can be a
complex process, but it offers numerous benefits for network management.
By following the steps outlined in this chapter and testing the lab properly,
you can ensure that your lab is configured properly and working as
expected.

CHAPTER 5: CODE, TEST &
VALIDATE NETWORK

AUTOMATION

Understanding Network Automation Scripts
Network automation scripts are scripts that automate tasks in a network
environment, such as configuring network devices, monitoring network
traffic, or managing network security. Python is a popular language for
network automation due to its simplicity, readability, and extensive libraries
for network automation. In this chapter, we will describe the concepts
involved in creating network automation scripts using Python.

One of the main concepts involved in network automation scripts is the use
of APIs. In the context of network automation, APIs are used to interact
with network devices, such as routers and switches, and perform tasks such
as configuring interfaces or retrieving device information. APIs can be used
to communicate with devices using various protocols, such as SNMP
(Simple Network Management Protocol) or NETCONF (Network
Configuration Protocol).

Another key concept involved in network automation scripts is the use of
libraries. Python has several libraries for network automation, as discussed
in the previous chapter, which provide pre-built functions and tools for
interacting with network devices and protocols. These libraries can simplify
the task of creating network automation scripts and reduce the amount of
code needed to perform complex tasks.

In addition to APIs and libraries, network automation scripts also rely on
data structures and algorithms. Data structures, such as dictionaries or lists,
are used to organize and store data, such as device information or
configuration data. Algorithms, such as search or sorting algorithms, can be
used to perform complex tasks, such as finding a specific device in a
network or analyzing network traffic.

Error handling is another important concept in network automation scripts.
As with any software, network automation scripts can encounter errors,
such as network connectivity issues or incorrect configuration data. To
handle these errors, scripts can use exception handling, which allows the
script to continue running even if an error occurs. Exception handling can
also provide feedback to the user, such as logging the error message or
sending an email notification.

Finally, network automation scripts may also use database systems to store
and retrieve network data. Database systems, such as MySQL or
PostgreSQL, can be used to store device configuration data, network
topology information, or network traffic data. These databases can be
accessed using SQL (Structured Query Language) queries, which can be
executed from within a Python script.

To summarize, network automation scripts using Python rely on APIs,
libraries, data structures, and algorithms to automate tasks in a network
environment. Exception handling and database systems are also important
concepts in network automation scripts. By leveraging these concepts,
network automation scripts can simplify the task of managing a network
environment and improve the efficiency and accuracy of network
management tasks.

Procedure of Network Automation Scripts
Following are the steps involved in writing, testing, and validating network
automation scripts in Python:

Determine the Task: The first thing you need to do is figure out
the task that you want the script to take care of for you.
Performing tasks such as configuring network devices or
monitoring network traffic could fall into this category.
Pick a Public Library: Pick a library that offers all of the
features and resources that are required for the task at hand. If
you want to automate the configuration of network devices, for
instance, you could go with the Netmiko library.
Bring in the Collection: Utilizing the "import" statement, bring
the desired library into the Python script you're working on.
Specify the Variables: Define the variables that will hold the
required data, such as IP addresses or configuration data, and
then use those variables to store the data.
Create the Code: Create the code that, when run, will carry out
the required actions by making use of the functions and tools
provided by the library.
Put the Code to the Test: Run the code through its paces by
putting it through its paces in a test environment or on test
devices to ensure that it performs as anticipated.
Debugging the Code: When testing is complete, you should
debug any errors or problems that were discovered. This may
involve using print statements to check the values of variables
or using a debugger tool to step through the code. Both of these
options are possible.
Validate the Code: Validate the code by executing it on devices
or in an environment that is intended for production. This step
is essential for ensuring that the code is functioning
appropriately and will not result in any problems when it is
deployed in a production setting.
Documenting the Code: To document the code, add comments
that explain the purpose of each section of code and the

variables that are being used. Because of this, it will be simpler
for others to understand the code in the future and make
modifications to it.
Version Control: Make use of tools for version control, such as
Git, in order to keep track of changes that have been made to
the code and collaborate with other members of your team.

Determining the task, selecting a library, defining variables, writing the
code, testing the code, debugging any issues that arise, validating the code
on production devices, documenting the code, and using version control
tools to manage changes to the code are all components of the process of
writing, testing, and validating network automation scripts in Python. If you
follow these steps, you will increase the likelihood that the script will
automate network tasks in a way that is effective, efficient, and reliable.

Define Variables for Automation Scripts
Defining variables in Python is a critical step when writing network
automation scripts. In this sample program illustration, we will show you
how to define variables in Python by writing a simple script that automates
the process of configuring a network device.

Install Required Libraries
Before writing the script, we need to make sure that we have the necessary
libraries installed. In the below code, we will be using the Netmiko library,
which we can install using the following command:

pip install netmiko

Import Libraries
Next, we need to import the necessary libraries into our Python script using
the import statement. In the below code, we will import the netmiko library.

import netmiko

Define Variables
Now that we have the necessary libraries imported, we can define the
variables that we will use in our script.

In the below code, we will define the following variables:

device_type: The type of network device we want to configure,
such as Cisco IOS, Cisco Nexus, or Juniper Junos.
ip_address: The IP address of the device we want to configure.
username: The username we will use to authenticate with the
device.
password: The password we will use to authenticate with the
device.
config_commands: The configuration commands we want to
send to the device.

Following is the code that defines these variables:

device_type = 'cisco_ios'
ip_address = '192.168.1.1'
username = 'admin'
password = 'password'
config_commands = ['interface GigabitEthernet0/0', 'ip address
192.168.2.1 255.255.255.0', 'no shutdown']

Connect to Device
With our variables defined, we can now connect to the network device
using the ConnectHandler() method from the Netmiko library. This method
takes the following parameters: device_type, ip_address, username, and
password.

device = {
 'device_type': device_type,
 'ip': ip_address,
 'username': username,
 'password': password
}
net_connect = netmiko.ConnectHandler(**device)

Send Configuration Commands
With our connection established, we can now send the configuration
commands to the device using the send_config_set() method from the
Netmiko library. This method takes a list of configuration commands as its
parameter.

output = net_connect.send_config_set(config_commands)
print(output)

Close Connection

Once we have sent the configuration commands, we should close the
connection to the device to free up resources.

net_connect.disconnect()

Putting all of these steps together, below is the complete Python script that
defines variables and uses the Netmiko library to configure a network
device:

import netmiko
device_type = 'cisco_ios'
ip_address = '192.168.1.1'
username = 'admin'
password = 'password'
config_commands = ['interface GigabitEthernet0/0', 'ip address
192.168.2.1 255.255.255.0', 'no shutdown']
device = {
 'device_type': device_type,
 'ip': ip_address,
 'username': username,
 'password': password
}
net_connect = netmiko.ConnectHandler(**device)
output = net_connect.send_config_set(config_commands)
print(output)
net_connect.disconnect()

Create Script to Use Variables
Now, we can use the variables that we have defined in our Python script.
Following is an example of how to use the variables that we have defined:

#!/usr/bin/env python
Define variables
device_type = 'cisco_ios'

ip_address = '10.0.0.1'
username = 'admin'
password = 'password'
Use variables
print('Connecting to device at {}:'.format(ip_address))
print('Device type: {}'.format(device_type))
print('Username: {}'.format(username))
print('Password: {}'.format(password))

In this script, we have defined the variables device_type, ip_address,
username, and password. We then used these variables in the print()
statements to display the device information.

Run the Script
To run the script, save the code into a file with the .py extension and
execute it from the terminal or command prompt.

$ python script_name.py

When the script is executed, it will display the device information that we
defined in the variables.

Connecting to device at 10.0.0.1:
Device type: cisco_ios
Username: admin
Password: password

By following these steps, we can define variables in our Python scripts for
network automation and use them to simplify our code and make it more
flexible.

Write Codes using Python Tools
Following is a sample demonstration to write code for network automation
tasks using Python libraries and tools:

Install Required Libraries and Tools
Before we start writing our code, we need to make sure that we have the
necessary libraries and tools installed. For network automation, we can use
libraries such as Nornir, Paramiko, Netmiko, and PyEZ.

To install these libraries, we can use the pip command in the terminal or
command prompt:

pip install nornir paramiko netmiko junos-eznc

Import Libraries
Once we have installed the necessary libraries, we need to import them into
our Python script. Following is an example of how to import these libraries:

from nornir import InitNornir
from nornir.plugins.tasks.networking import
netmiko_send_command
from nornir.plugins.tasks.networking import napalm_get
from nornir.plugins.functions.text import print_result
from paramiko import SSHClient
from paramiko import AutoAddPolicy
from junos import Junos_Context

In this script, we are importing the Nornir library, which is a Python
automation framework that simplifies network automation tasks. We are
also importing the netmiko_send_command and napalm_get tasks from the
Nornir networking plugin, which allows us to run commands on network
devices. We are using the print_result function to print the output of our
commands. Additionally, we are importing the Paramiko SSH client, which
allows us to connect to network devices over SSH. Finally, we are

importing the Junos Context from PyEZ library, which provides context
information for Juniper devices.

Define Inventory
The Nornir framework uses an inventory to manage devices and groups of
devices. We need to define the inventory in our script before we can use it.

Following is an example of how to define the inventory:

nr = InitNornir(
 inventory={
 "plugin": "SimpleInventory",
 "options": {
 "host_file": "hosts.yaml",
 "group_file": "groups.yaml",
 },
 }
)

In this script, we are using the InitNornir function to initialize Nornir with a
SimpleInventory plugin. We are specifying the location of our host and
group files in the options parameter.

Define Tasks
We need to define the tasks that we want to perform on our devices.
Following is an example of how to define a task that retrieves the running
configuration of a device using Netmiko:

def get_config(task):
 result = task.run(
 task=netmiko_send_command,
 command_string="show running-config",
)
 task.host["config"] = result.result

In this script, we define a function called get_config that takes a task as an
argument. We use the netmiko_send_command task to retrieve the running
configuration of the device and store it in the config attribute of the host
object.

Define Playbook
Finally, we need to define the playbook that combines the tasks and devices
that we want to run them on. Following is an example of how to define a
playbook that runs the get_config task on all devices in our inventory:

from nornir.core.filter import F
def main():
 ios = nr.filter(F(platform="ios"))
 results = ios.run(task=get_config)
 print_result(results)

In this script, we define a function called main that filters the devices in our
inventory that are running IOS. We then run the get_config task on those
devices and print

Execute the Script
Once the script has been written and saved, it can be executed using the
command:

python script_name.py

This will run the script and perform the network automation tasks that were
defined in the script. The output of the script can be viewed in the console.

Test and Validate the Script
After the script has been executed, it is important to test and validate the
results to ensure that the network automation tasks were performed
correctly. This can be done by manually verifying the changes made by the
script, or by using additional scripts to gather information about the
network and compare it to the desired state.

Following is an example script that demonstrates the process of defining
variables, importing libraries, and performing network automation tasks
using Python:

import paramiko
Define Variables
ip_address = "10.0.0.1"
username = "admin"
password = "password"
command = "show interfaces"
Establish SSH Connection
ssh = paramiko.SSHClient()
ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy())
ssh.connect(ip_address, username=username, password=password)
Send Command
stdin, stdout, stderr = ssh.exec_command(command)
Print Output
print(stdout.read().decode())
Close Connection
ssh.close()

In this script, the paramiko library is imported and used to establish an SSH
connection to a network device with the specified IP address, username, and
password. The command variable is defined to specify the command that
will be sent to the device. The exec_command() method is used to send the
command to the device, and the output is printed to the console using the
print() function. Finally, the SSH connection is closed using the close()
method.

To run this script, save it as a .py file and execute it using the command:

python script_name.py

This will establish an SSH connection to the device, send the specified
command, and print the output to the console.

To conclude, network automation using Python involves defining variables,
importing libraries, writing code to perform network automation tasks, and
testing and validating the results. By following these steps and using the
available tools and libraries, network engineers can automate repetitive
tasks, improve efficiency, and reduce errors in network management.

Testing Network Automation Scripts
During the development process, one of the most important steps is testing
the code for the network automation. This step ensures that the code will
carry out the desired tasks and will function correctly and without errors.
When it comes to automating network tasks, this is of utmost importance
because errors in the code could potentially cause issues with network
connectivity and compromise security.

Creating a test environment or utilising test devices is the initial step in the
process of testing code for network automation. A test environment is an
environment that is distinct from the production environment. It is an
environment that can be used to test new code changes without having an
effect on the live network. Whether you choose to do it physically or
virtually, you can accomplish this goal by constructing an exact copy of the
production environment.

After the test environment has been prepared, the network automation code
can be executed either on the test devices or within the test environment
itself. It is necessary to conduct tests to determine whether or not the code is
capable of carrying out the activities that are required, such as configuring
devices, gathering data, and creating backups. In addition to that, the code
ought to be examined for its capacity to deal with errors and exceptions.

In order to properly test the code for the network automation, it is essential
to have a complete set of test cases that account for every conceivable
circumstance. This includes both positive and negative test cases, which
evaluate the capability of the code to respond appropriately to a variety of
inputs and circumstances.

Test cases that are considered positive are those in which it is anticipated
that the code will successfully complete a particular activity. A good
example of a positive test case for configuring a switch would be to
configure a VLAN and then check to see that the VLAN was successfully
created after making the appropriate configuration changes. Test cases that
are considered to be negative are those in which it is anticipated that the
code will fail or generate an error. A negative test case for configuring a

switch could consist of, for instance, configuring a VLAN that already
exists and ensuring that the code generates an error message in response to
the configuration.

During the testing phase, it is essential to make sure that errors and
exceptions are checked for, in addition to monitoring the output of the code.
Any problems that arise must be recorded and communicated, after which
the code must be altered and retested until all of the problems have been
fixed.

Set Up a Test Environment
Before testing the code, it is important to set up a test environment that
closely mimics the production environment. This can include test devices,
virtual machines, and test networks. The test environment should be
isolated from the production environment to prevent any unintended
consequences.

Create Test Cases
Test cases should be created to ensure that the code performs the desired
tasks and handles errors appropriately.

Test cases can include scenarios such as:

Successful execution of the code
Incorrect input parameters
Device connectivity issues
Incorrect output from the code

Run the Code
Once the test environment and test cases have been set up, the code can be
run to perform the network automation tasks. The output of the code should
be compared to the expected output to ensure that the code is working as
expected.

Following is an example code that demonstrates how to test network
automation code by running it on a test device:

import paramiko
Define Variables
ip_address = "10.0.0.1"
username = "admin"
password = "password"
command = "show interfaces"
Establish SSH Connection
ssh = paramiko.SSHClient()
ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy())
ssh.connect(ip_address, username=username, password=password)
Send Command
stdin, stdout, stderr = ssh.exec_command(command)
Validate Output
output = stdout.read().decode()
if "Interface" in output:
 print("Test Passed")
else:
 print("Test Failed")
Close Connection
ssh.close()

In the above code, the code establishes an SSH connection to a test device
and sends the command show interfaces. The output of the command is
validated to ensure that it contains the string "Interface". If the output
contains this string, the test is considered passed. If not, the test is
considered failed.

Document Test Results
After running the code and validating the output, it is important to
document the test results. This can include the date and time the test was
performed, the test cases that were executed, and the results of each test
case.

By following these steps, network automation code can be tested to ensure
that it works as expected and performs the desired tasks without errors.
Testing network automation code is a critical step in the development
process and can help prevent errors from being introduced into the
production environment.

Debug Errors
During the process of developing software, errors, bugs, and other problems
may crop up. This process is known as "debugging," and it involves finding
and fixing these problems. It is a crucial stage in the process of
guaranteeing that the software in question functions properly and satisfies
the needs of its end users. Debugging is an essential part of network
automation because it ensures that scripts perform as intended and can
respond appropriately to any errors or unexpected events that may arise. In
this section, we will demonstrate how to debug errors or issues that arise
during testing using Python.

Identify the Error or Issue
The first step in debugging is to identify the error or issue that is occurring.
This can be done by reviewing the error message or output from the code.

Review the Code
Once the error or issue has been identified, the code should be reviewed to
determine the cause of the error or issue. This can involve reviewing the
syntax of the code, reviewing the input parameters, or reviewing the output
of the code.

Use Print Statements
One effective way to debug code is to use print statements. Print statements
can be used to output the values of variables or the status of the code at
various points during execution.

Define Variables
a = 10
b = 20
Debug Code with Print Statements
print("Value of a: ", a)
print("Value of b: ", b)
c = a + b
print("Value of c: ", c)

In the above code, print statements are used to output the values of the
variables a, b, and c at various points during execution. This can help
identify the cause of errors or issues that are occurring.

Use a Debugger
Python also includes a built-in debugger that can be used to step through
code line-by-line and identify errors or issues. The debugger can be
launched by adding the following line of code to the script:

import pdb; pdb.set_trace()

This line of code will launch the debugger at the point where it is placed in
the script. Once the debugger is launched, it can be used to step through the
code line-by-line, view the values of variables, and identify errors or issues.

Fix the Error or Issue
Once the cause of the error or issue has been identified, the code can be
modified to fix the error or issue. This can involve correcting syntax errors,
modifying input parameters, or modifying the output of the code.

Test the Code

After the code has been modified, it should be tested again to ensure that
the error or issue has been resolved. The code should be run on a test
environment or test devices, and the output should be compared to the
expected output.

By following these steps, errors or issues that arise during testing can be
identified and resolved using Python. Debugging is an essential step in the
software development process and can help ensure that network automation
code works as expected and performs the desired tasks without errors.

Validate Network Automation Scripts
In the process of developing software, one of the most important steps is
called "validating the code for network automation." This step is necessary
because it ensures that the code will function as expected once it is
deployed to the production environment. When network automation code is
run on production devices, developers receive feedback on the functionality,
performance, and reliability of their code based on how well it actually
works in the real world.

In order to validate code for network automation, the first step is to perform
in-depth testing of the code in a staging or test environment. This
environment ought to be a copy of the production environment, complete
with the production environment's network topology, devices, and
configurations, and it ought to be a replica of the production environment.
When the code is deployed to the production environment, this will help to
ensure that it behaves as expected in the way that was intended.

It is possible to deploy the code to the production environment or devices
after it has been validated in the staging or test environment. It is essential
to perform a code review prior to deploying the code to the production
environment. This review should ensure that the code is well-documented,
that it complies with coding standards, and that it does not introduce any
security vulnerabilities.

It is essential to carry out the code deployment in a controlled manner if
you wish for it to be successful when applied to production devices. This
can be accomplished through the use of methods such as phased
deployment, in which the code is initially rolled out to a select group of
devices, and then gradually rolled out to the entire production environment
over the course of some time. Before the code is deployed to the entire
production environment, any problems or bugs that may exist can therefore
be located and fixed before the code is deployed. After deployment, it is
essential to perform close monitoring of both the devices and the network in
order to validate the network automation code. Using tools for network
monitoring that are able to detect any issues or irregularities present in the
network is one way to accomplish this goal. In order to maintain the

reliability and safety of the network, it is imperative that any errors or
problems that crop up be resolved as quickly as possible.

In addition to keeping an eye on the network, it is critical to validate the
operation of the automation code for the network. Using test scripts that
simulate a variety of different network conditions and verify that the code
behaves as expected is one way to accomplish this goal. Any problems or
errors that are found should be documented, addressed, and put through
another round of testing to ensure that they have been fixed.

In this section, we will demonstrate how to validate network automation
code by running it on the production environment or devices.

Prepare the Production Environment
Before running the network automation code on the production
environment or devices, it is essential to ensure that the environment or
devices are properly prepared. This can involve performing backups,
verifying network connectivity, and verifying that the necessary software
and libraries are installed.

Deploy Code to Production Environment or Devices
Once the production environment or devices are properly prepared, the
network automation code can be deployed to the production environment or
devices. This can be done using a variety of methods, including copying the
code to the production environment or devices using SCP or SFTP.

Copy Code to Production Environment or Devices
import paramiko
Define SSH Connection
ssh = paramiko.SSHClient()
ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy())
ssh.connect(hostname='prod-device', username='user',
password='password')
Copy Code to Device
sftp = ssh.open_sftp()

sftp.put('network_automation.py',
'/home/user/network_automation.py')
sftp.close()

In the above code, the paramiko library is used to establish an SSH
connection to the production device and copy the network_automation.py
script to the device.

Run the Code on Production Environment or Devices
Once the code has been deployed to the production environment or devices,
it can be executed using the Python interpreter.

Execute Code on Production Environment or Devices
import paramiko
Define SSH Connection
ssh = paramiko.SSHClient()
ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy())
ssh.connect(hostname='prod-device', username='user',
password='password')
Execute Code on Device
stdin, stdout, stderr = ssh.exec_command('python
/home/user/network_automation.py')
output = stdout.readlines()
errors = stderr.readlines()
Print Output and Errors
print("Output: ", output)
print("Errors: ", errors)
ssh.close()

In the above code, the paramiko library is used to establish an SSH
connection to the production device and execute the
network_automation.py script on the device.

Verify the Output

After the code has been executed on the production environment or devices,
it is essential to verify the output to ensure that the code works correctly
and without errors. This can involve reviewing the output to ensure that the
expected tasks were performed and that no errors or issues were
encountered.

By following these steps, network automation code can be validated by
running it on the production environment or devices. Validating network
automation code is essential to ensure that the code works as expected and
without errors when deployed to the production environment.

Summary
In this chapter, we discussed the steps involved in writing, testing, and
validating network automation scripts using Python. We delved into the
steps involved in writing network automation scripts in Python. We started
by defining the variables required for automation scripts, such as IP
addresses, usernames, and passwords. We also explained how to use the
appropriate libraries and tools for various tasks such as connecting to
devices, configuring ports, hosts, and servers, and implementing network
encryption.

After that, we discussed testing the network automation code by running it
on a test environment or test devices to ensure that it is working as
expected. We explained the importance of testing and debugging to identify
and fix any errors or issues that arise during testing. We also demonstrated
how to use Python's built-in debugging tools to locate and fix errors in the
code. Finally, we discussed the validation of network automation code by
running it on the production environment or devices. We explained the
importance of testing on a production environment to ensure that the code
works as intended and does not cause any unexpected issues.

To sum it up, writing, testing, and validating network automation scripts is a
crucial aspect of network automation. By following the steps outlined in
this chapter, network administrators can create effective and reliable
automation scripts that can help them save time, increase productivity, and
reduce errors in their network management tasks.

CHAPTER 6: AUTOMATION OF
CONFIGURATION MANAGEMENT

Why Configuration Management?
Need of Configuration Management
The process of managing and keeping track of the configuration of
hardware and software systems within a network environment is referred to
as configuration management. It entails keeping track of changes made to
systems, applications, and devices in order to guarantee that their
configurations are accurate and consistent at all times.

Because it contributes to the preservation of the steadiness and uniformity
of the network environment, configuration management is an essential
component of contemporary IT infrastructure management. IT teams are
able to quickly identify and troubleshoot issues when they track changes
and configurations. This helps to minimise the impact that downtime has on
network operations. The amount of time that network systems are
unavailable can be cut down and their reliability can be improved thanks to
configuration management.

The fact that configuration management guarantees that all systems and
applications are configured in an accurate and consistent manner is one of
the most important advantages it offers. When systems are not configured
correctly, it is possible for errors, vulnerabilities, and conflicts to occur.
This helps to avoid those issues. IT teams are able to improve the overall
performance of the network environment if they take the precaution of
ensuring that all of the systems are configured in the same manner. This
lowers the risk of unexpected behaviour.

In addition to its other advantages, configuration management helps to
increase the dependability of network systems while simultaneously
decreasing the amount of downtime they experience. IT teams are able to
quickly identify and troubleshoot issues that may arise thanks to the practise
of tracking changes and configurations. This helps to minimise the impact
that downtime has on network operations. In addition to this, configuration
management helps to ensure that systems are properly updated and
maintained, which in turn reduces the likelihood of failures occurring
within the system.

In addition to being essential for compliance and security, configuration
management is also very important. It helps ensure that all systems are
configured in accordance with the standards and best practises of the
industry, and that any security vulnerabilities are identified and addressed as
quickly as possible. IT departments can benefit from the use of
configuration management tools to better identify potential security flaws
and monitor their level of compliance with industry standards and
regulations.

Configuration management is an essential component of the management of
modern information technology infrastructure. It helps to maintain the
consistency and steadiness of the network environment, while also reducing
downtime, increasing reliability, ensuring compliance, and enhancing
security. IT teams are able to effectively manage and track the configuration
of hardware and software systems by utilising the tools and processes that
are associated with configuration management. This helps to ensure that the
systems are configured correctly and consistently.

Role of Python in Configuration Management
Python is a high-level programming language that is frequently employed
in the process of automating tasks related to configuration management.
The process of managing the configuration of software, hardware, and
network devices for the purpose of ensuring that they function in an
effective and secure manner is referred to as configuration management.

Python's user-friendliness is one of the primary factors that contribute to its
widespread adoption for the purpose of automating various configuration
management tasks. Python is a programming language that is easy to learn
even for people who do not have a strong background in programming
because it is simple and intuitive. Because of its straightforward and
understandable syntax, writing, reading, and maintaining code in it is a
breeze. One more reason why Python is an excellent choice for automating
configuration management is due to the language's adaptability. It is
compatible with a variety of operating systems, such as Windows, Linux,
and macOS, and it is able to communicate with a wide variety of software
programmes and computer programmes. Python's adaptability enables

information technology teams to automate a variety of tasks, including the
installation of software, the configuration of networks, and the monitoring
of systems.

Python also has a vast collection of libraries and tools that make it simple to
work with a variety of data and systems. This makes Python an extremely
versatile programming language. Its built-in modules, such as subprocess,
os, and shutil, facilitate simple interaction with the underlying system and
make it possible to automate tasks that, in the absence of these modules,
would necessitate the intervention of a human. Additionally, Python
libraries such as Paramiko, Netmiko, and PyEZ provide specialised
functionality for managing network devices. This makes it much simpler for
IT teams to automate network configuration tasks.

Automating a wide variety of configuration management tasks, such as
system configuration, application deployment, and network monitoring, can
be accomplished by writing scripts in the Python programming language.
These scripts can be programmed to run at predetermined intervals or
triggered by particular events, which enables IT teams to react rapidly to
shifts in the network environment.
When it comes to automating configuration management, one of the
primary benefits of using Python is that it enables the creation of code
libraries that can be used again and again. These libraries can be used to
build upon previously written code and streamline the development process,
making it possible for IT teams to perform their jobs in a more effective and
efficient manner.

Server Provisioning with Terraform
The process of setting up and configuring servers so that they can be used
in a production environment is referred to as server provisioning. This
procedure entails a number of steps, each of which guarantees that the
server is prepared to carry out the task for which it was designed.

The process of provisioning a server begins with the selection of hardware
that is suitable for the server in question. This may involve selecting a
server that possesses the appropriate amount of processing power, memory,
and storage capacity to meet the requirements of the workload that is
intended to be performed.

After the hardware has been chosen, the next step is to install and configure
the essential software, applications, and services on the server. This step
comes after the selection of the hardware. This includes the installation of
the operating system, the configuration of the security settings, the setting
up of networking, and the installation of any necessary drivers or utilities.

The next step, which comes after the installation of the software and
applications, is to configure the server so that it can perform the task for
which it was designed. In this step, you might have to configure databases,
web servers, or any number of other applications that are necessary for the
server to run. It's also possible that you'll have to configure settings for
things like email servers or backup systems.

After the server has been configured, it needs to be tested to make certain
that it is operating in the correct manner. This requires running tests to
verify that all of the applications and services are functioning as expected,
as well as that the server is capable of handling the workload that is
intended for it.

The process of provisioning a server can be challenging and time-
consuming, particularly when multiple servers are being deployed at the
same time. Automation tools, which can automate many of the steps
involved in server provisioning, are frequently utilised by organisations in
order to facilitate the streamlining of the process. These tools have the

potential to cut down on the amount of time and effort necessary to set up
and configure servers, while simultaneously lowering the risk of making
errors or setting them up incorrectly. The use of automation tools like
Python and Terraform can simplify and streamline the process, making it
faster and more efficient.

To demonstrate the process of server provisioning using Python and
Terraform, we will use a simple example of setting up a web server on an
Amazon Web Services (AWS) EC2 instance.

Set up AWS Credentials
Before we can proceed with setting up the EC2 instance, we need to set up
our AWS credentials. This involves creating an IAM user with the
necessary permissions and generating an access key and secret key that we
will use to authenticate with AWS.

Install Terraform
Terraform is an open-source infrastructure as code tool that allows you to
define and provision infrastructure resources using a declarative
configuration file. To install Terraform on your local machine, you can
follow the installation instructions on the Terraform website.

Define Terraform Configuration
In this step, we will define the Terraform configuration file that specifies
the resources we want to provision on AWS. For our example, we will
create an EC2 instance with the necessary security group rules to allow
HTTP traffic.

We will create a file named aws.tf and add the following code:

provider "aws" {
 access_key = "ACCESS_KEY"
 secret_key = "SECRET_KEY"
 region = "us-west-2"
}
resource "aws_instance" "web" {

 ami = "ami-0c55b159cbfafe1f0"
 instance_type = "t2.micro"
 tags = {
 Name = "Web Server"
 }
 user_data = <<EOF
 #!/bin/bash
 sudo apt-get update
 sudo apt-get install -y apache2
 EOF
 security_groups = ["web"]
}
resource "aws_security_group" "web" {
 name_prefix = "web"
 ingress {
 from_port = 80
 to_port = 80
 protocol = "tcp"
 cidr_blocks = ["0.0.0.0/0"]
 }
}

This configuration file specifies that we want to create an EC2 instance
with the AMI ami-0c55b159cbfafe1f0 and the instance type t2.micro. We
also specify a user data script that installs Apache on the server. The
security group rules allow HTTP traffic from any IP address.

Initialize Terraform
Before we can apply the Terraform configuration and provision the
resources on AWS, we need to initialize Terraform by running the terraform
init command in the directory where our aws.tf file is located.

Apply Terraform Configuration

To apply the Terraform configuration and provision the resources on AWS,
we run the terraform apply command. Terraform will display a summary of
the changes that will be made and prompt us to confirm that we want to
proceed. If we confirm, Terraform will create the EC2 instance and security
group on AWS.

Connect to EC2 Instance
After the EC2 instance is provisioned, we can connect to it using SSH to
verify that Apache is installed and running. We can find the public IP
address of the instance in the AWS console or by running the terraform
output command in the directory where our aws.tf file is located.

Creating Server
Now that we have defined our resources, we can use Terraform to create our
server. To do this, we just need to run the terraform apply command.
Terraform will show us a preview of the changes it is about to make, and
ask us to confirm that we want to apply them. Type "yes" when prompted.

terraform apply

Terraform will now create our server. Once it's finished, it will output the
public IP address of the server. Make note of this, as we'll need it to connect
to the server later.

Testing Server
Now that we've created our server, we can test it to make sure it's working
properly. We'll use Python to connect to the server over SSH and run a
command. To do this, we'll use the Paramiko library.

First, let's install the Paramiko library:

pip install paramiko

Now we can write a Python script to connect to the server and run a
command. Create a new file called test_server.py and paste in the following
code:

import paramiko
Set the hostname, username, and password for the server
hostname = "<public_ip>"
username = "ubuntu"
password = "<your_password>"
Connect to the server
ssh_client = paramiko.SSHClient()
ssh_client.set_missing_host_key_policy(paramiko.AutoAddPolicy(
))
ssh_client.connect(hostname=hostname, username=username,
password=password)
Run a command on the server and print the output
stdin, stdout, stderr = ssh_client.exec_command("ls -l")
print(stdout.read().decode())
Close the SSH connection
ssh_client.close()

Replace <public_ip> with the public IP address of your server, and
<your_password> with the password you set earlier. Save the file and run it
with the following command:

python test_server.py

The script will connect to the server over SSH, run the ls -l command, and
print the output. If everything is working properly, you should see a list of
files and directories in the server's home directory.

Using Python to Automate System Settings
Let us take an example wherein we want to automate the process of setting
the timezone on a Linux machine. We can use Python to write a script that
will execute the necessary commands to change the timezone.

Following are the steps we can follow:

Import Necessary Modules
We will need to import the subprocess module, which allows us to execute
shell commands from within Python.

import subprocess

Define Timezone
We need to define the timezone we want to set. We can do this by assigning
the timezone to a variable.

timezone = "America/New_York"

Execute Command to Change Timezone
We can use the subprocess.run() method to execute the necessary command
to change the timezone. The command we need to run is timedatectl set-
timezone, followed by the timezone we want to set.

subprocess.run(["timedatectl", "set-timezone", timezone],
check=True)

The check=True argument ensures that if the command fails for any reason,
an error will be raised.

Verify Setting the Timezone
We can use the subprocess.run() method again to execute the timedatectl
command with the status argument to verify that the timezone has been set
correctly.

result = subprocess.run(["timedatectl", "status"],
capture_output=True, text=True)
print(result.stdout)

The capture_output=True argument captures the output of the command,
while the text=True argument ensures that the output is returned as a string.

Putting it all together, below is what the complete script looks like:

import subprocess
timezone = "America/New_York"
subprocess.run(["timedatectl", "set-timezone", timezone],
check=True)
result = subprocess.run(["timedatectl", "status"],
capture_output=True, text=True)
print(result.stdout)

When we run this script, the timezone on the machine will be set to
America/New_York, and the output of the timedatectl status command will
be printed to the console.

Using Python to Modify Base Configurations
Base configurations are the initial setup and configuration of devices or
systems, and they are referred to in network automation as "base
configurations." This includes any initial configurations required to bring a
device or system online and make it functional, such as setting up
interfaces, configuring IP addresses, enabling routing protocols, and any
other necessary initial configurations.

To modify base configurations with Python, we can use libraries like
Netmiko or Nornir to automate the process. Following is a sample code
snippet using Netmiko to modify the base configuration of a Cisco IOS
router:

from netmiko import ConnectHandler
device = {
 'device_type': 'cisco_ios',
 'ip': '192.168.1.1',
 'username': 'admin',
 'password': 'password',
}
Connect to the device
net_connect = ConnectHandler(**device)
Enter enable mode
net_connect.enable()
Send commands to modify the configuration
commands = [
 'interface gigabitethernet0/0',
 'ip address 10.0.0.1 255.255.255.0',
 'no shutdown',
 'exit',
 'router ospf 1',
 'network 10.0.0.0 0.0.0.255 area 0',
 'exit',

]
output = net_connect.send_config_set(commands)
Print the output
print(output)

In this code, we first define the device details (IP address, credentials, etc.)
and connect to the device using Netmiko's ConnectHandler function. We
then enter enable mode and send a series of commands to modify the base
configuration. The send_config_set function sends a list of commands to
the device, and the output is stored in the output variable. We can then print
the output to verify that the commands were executed successfully.

Using Terraform to Modify Base
Configurations
We can also use Terraform to modify base configurations in a more
structured and repeatable way. Following is an example Terraform
configuration file that modifies the base configuration of a Cisco IOS
router:

provider "netmiko" {
 username = "admin"
 password = "password"
 ip = "192.168.1.1"
 device_type = "cisco_ios"
}
resource "netmiko_config" "base_config" {
 commands = [
 "interface gigabitethernet0/0",
 "ip address 10.0.0.1 255.255.255.0",
 "no shutdown",
 "exit",
 "router ospf 1",
 "network 10.0.0.0 0.0.0.255 area 0",
 "exit",
]
}

In this Terraform configuration, we first define a Netmiko provider that
specifies the device details and credentials. We then define a
netmiko_config resource that contains a list of commands to modify the
base configuration. When we apply this configuration, Terraform will
connect to the device using Netmiko and execute the specified commands.

By defining and modifying base configurations in a programmatic way, we
can also make it easier to manage large-scale infrastructure and adapt to

changing requirements over time.

Automating System Identification
Methods such as network scanning, port scanning, and querying network
devices for information are examples of some of the techniques that are
typically utilised in the process of system identification. Using these
methods, information can be gathered about the topology of the network, as
well as the types of devices, operating systems, and software that are
installed on each system.

When all of this data has been compiled, it can be used to produce a
network inventory that not only depicts the infrastructure of the network but
also identifies the particular systems that need specific configuration or
management tasks carried out on them. The aforementioned information is
then utilised by automation scripts in order to zero in on particular systems
and apply appropriate configurations or actions.

In this below sample program, we will use Python and Terraform to
automate system identification by creating a script that retrieves system
information from Terraform and uses it to target specific systems.

Install Terraform Module
First, we need to install the necessary Python libraries, including the
Terraform module. We can install the Terraform module using pip, which is
the Python package manager, by running the following command:

pip install python-terraform

Python Script to Retrieve System Information
Once the Terraform module is installed, we can create a Python script that
uses it to retrieve system information. In the below code, we will retrieve
the IP addresses of all instances in a specific VPC.

import terraform
create a Terraform object
tf = terraform.Terraform(working_dir='./terraform')
retrieve the output from the Terraform configuration

outputs = tf.output()
get the list of instance IP addresses from the output
instance_ips = outputs['instance_ips']['value']
loop through the instance IPs and do something
for ip in instance_ips:
 print(ip)
do something with the IP address, such as configuring it

In this script, we first create a Terraform object and specify the directory
where our Terraform configuration files are located. We then use the
output() method to retrieve the output from the Terraform configuration. In
this case, we are retrieving the instance_ips output, which is a list of all
instance IP addresses in the VPC. We then loop through the list of instance
IPs and do something with each IP address, such as configuring it.

We can use this technique to retrieve any kind of system information we
need, such as server names, MAC addresses, or operating system versions.
By automating system identification, we can ensure that our automation
scripts are targeted to the correct systems, and we can reduce the risk of
human error when configuring or managing multiple systems.

Using Python to Automate Patches and
Updates
Automating system patches and updates is an important task in maintaining
the security and stability of a network. Python can be used to automate this
process and make it more efficient.

Following are the steps to automate system patches and updates using
Python:

Install Necessary Libraries
The first step is to install the necessary libraries for automating system
patches and updates. Some of the commonly used libraries are subprocess,
os, and sys. These libraries allow us to run system commands and interact
with the operating system.

import subprocess
import os
import sys

Check for Available Updates
Use the subprocess library to check for available updates on the system.
This can be done using the command appropriate for the operating system
being used. For example, on Ubuntu, the command is sudo apt update.

subprocess.call(['sudo', 'apt', 'update'])

Upgrade the System
After checking for available updates, the next step is to upgrade the system.
This can also be done using the subprocess library. For example, on
Ubuntu, the command is sudo apt upgrade.

subprocess.call(['sudo', 'apt', 'upgrade', '-y'])

Reboot the System

If necessary, reboot the system after completing the upgrade process. This
can be done using the os library.

os.system('sudo reboot')

Schedule Regular Updates
Finally, schedule regular updates to ensure that the system remains up-to-
date. This can be done using the cron job scheduler. Use the following
command to open the crontab editor:

subprocess.call(['crontab', '-e'])

Then, add the following line to schedule automatic updates every week:

0 * * 0 sudo apt update && sudo apt upgrade -y && sudo reboot

This will run the update and upgrade commands every Sunday at midnight
and then reboot the system.

Using Terraform to Roll Patches and Updates
We can also use Terraform to automate system patches and updates.
Terraform is a popular tool for infrastructure automation and can be used to
provision and manage resources across multiple platforms.

Create Configuration File
Following is a sample Terraform configuration file to automate system
patches and updates:

resource "null_resource" "update_system" {
 provisioner "local-exec" {
 command = "sudo apt update && sudo apt upgrade -y"
 }
 provisioner "remote-exec" {
 inline = [
 "sudo reboot"
]
 }
 triggers = {
 always_run = "${timestamp()}"
 }
}

This configuration file uses a null resource to run the update and upgrade
commands and then reboots the system using remote-exec provisioner. The
triggers block ensures that the resource is always run, even if no changes
are detected.

Applying Configuration File
To apply this configuration file, run the following commands:

terraform init
terraform apply

These steps will automate system patches and updates using Python and
Terraform, providing a more efficient and streamlined way to manage
updates across your network.

Identify Unstable and Non-compliant
Configurations
When it comes to network automation, one of the most important tasks is to
locate unstable and non-compliant configurations. This helps to ensure that
the network infrastructure continues to operate normally. Network
automation is the process of managing and operating network devices, such
as switches, routers, and firewalls, with a minimal amount of human
intervention. This process involves the use of software tools and
technologies. Automating a network will improve its performance,
reliability, and security while simultaneously cutting down on the amount of
time, effort, and mistakes that are associated with manually managing a
network. This is the goal of network automation.

When it comes to network automation, unstable and non-compliant
configurations can lead to a variety of problems, including downtime for
the network, security breaches, and violations of compliance regulations. A
network configuration is said to have an unstable configuration if it is not
operating correctly or efficiently, which can result in performance issues,
network outages, and other issues. A configuration that does not adhere to
industry standards or best practises is referred to as having a non-compliant
configuration. This type of configuration can result in security flaws,
compliance violations, and other problems.

There are a few steps involved in the process of identifying unstable and
non-compliant configurations in network automation. The first thing that
needs to be done is to establish a baseline configuration for each network
device. This configuration should include the settings for the device that are
regarded as stable and compliant. Typically, the baseline configuration is
established based not only on the specific requirements of the network but
also on the industry standards and best practises that are currently in use.

The following step is to compare the actual configuration of each network
device to the configuration that was used as a baseline for that device. This
can be accomplished through the utilisation of a wide range of tools and
technologies, including network management systems (NMS),

configuration management databases (CMDB), and network automation
tools. The comparison has the ability to identify any differences between
the actual configuration and the baseline configuration, which can indicate
configurations that are unstable or do not comply with standards.

The unstable and non-compliant configurations will need to be remedied
after they have been identified as the next step in the process. In order to
restore the configuration settings to their original, compliant and stable
state, remediation requires making the necessary adjustments. This can be
accomplished in two ways: manually, by making adjustments to the
configuration settings; automatically, by utilising tools that are designed for
network automation.

When it comes to network automation, one of the most important tasks is
finding unstable and non-compliant configurations. This helps to ensure
that the network infrastructure operates as smoothly as possible. Network
automation can improve the performance, reliability, and security of a
network while simultaneously lowering the risk of network downtime,
security breaches, and compliance violations. This is accomplished by first
establishing a baseline configuration, then comparing the actual
configuration to the baseline configuration, and finally remediating any
unstable or non-compliant configurations that are found.

In this section, we will explain how to automate this process using Python
with the help of the Netmiko library.

Establish Connection with Device
First, we need to establish a connection with the device using the Netmiko
library. Netmiko is a multi-vendor library that allows you to automate
network tasks on different types of devices. It supports SSH and Telnet
connections and provides a simple and consistent interface to manage
devices.

Following is a sample code to connect to a device using Netmiko:

from netmiko import ConnectHandler
device = {

 'device_type': 'cisco_ios',
 'ip': '192.168.1.1',
 'username': 'username',
 'password': 'password',
}
ssh_conn = ConnectHandler(**device)

Retrieve Running Configuration
Once we have established a connection, we can execute show commands on
the device to retrieve information about its configuration. For example, we
can execute the "show running-config" command to retrieve the running
configuration of the device:

output = ssh_conn.send_command('show running-config')

The output of this command will be stored in the "output" variable. We can
then parse this output to identify unstable and non-compliant
configurations. For example, we can search for configurations that are not
compliant with a specific policy.

Search Non-compliant Interfaces
Following is a sample code that searches for interfaces that are not
compliant with a policy that requires them to have a description:

import re
Define the policy
policy = r'^interface \S+\n(?! description)[^!]+'
Search for non-compliant configurations
non_compliant = re.findall(policy, output, flags=re.MULTILINE)
Print the non-compliant configurations
print(non_compliant)

This code uses a regular expression to search for interfaces that do not have
a description. The regular expression matches any interface configuration
that does not contain the word "description". The "findall" method of the

"re" module is used to find all occurrences of this pattern in the output of
the "show running-config" command.

Fixing Non-compliant Configurations
We can also use Python to automate the process of fixing non-compliant
configurations. For example, we can add descriptions to interfaces that do
not have them. Following is a sample code that adds a description to
interfaces that do not have one:

Define the policy
policy = r'^interface (\S+)\n(?! description)[^!]+'
Find the non-compliant configurations
non_compliant = re.findall(policy, output, flags=re.MULTILINE)
Add descriptions to the non-compliant configurations
for interface in non_compliant:
 config = f'interface {interface}\ndescription Non-compliant
interface\n'
 ssh_conn.send_config_set(config)

This code uses the same regular expression as before to find non-compliant
configurations. It then loops through the non-compliant interfaces and adds
a description to each one.

In summary, identifying unstable and non-compliant configurations is a
critical task in network automation. Python and the Netmiko library can be
used to automate this process by retrieving the device configuration and
searching for non-compliant configurations using regular expressions.
Python can also be used to fix non-compliant configurations by modifying
the device configuration.

Summary
In this chapter, we have covered various aspects of configuration
management and server provisioning, including the reasons why we need it
and how we can automate it using Python and Terraform.

We started by discussing the importance of configuration management in
maintaining the stability and reliability of a network infrastructure. We also
talked about how configuration management tools can help manage
network configurations, ensure compliance with policies and standards, and
detect and correct configuration errors. Next, we discussed server
provisioning, which involves the process of setting up and configuring new
servers. We demonstrated how to use Terraform, an open-source
infrastructure-as-code tool, to automate the provisioning process, including
defining the infrastructure, specifying the configuration and setting up the
required environment variables.
We then moved on to automating system settings with Python. We
described how Python can be used to write scripts to automate the
configuration of system settings, such as network settings, firewall rules,
and user permissions. We provided a practical sample program illustration
of how to automate the configuration of the SSH service and access
permissions using Python and the paramiko library. We also covered the
concept of base configurations and provided a sample demonstration on
how to modify them using Python and Terraform. We explained that base
configurations are templates for system configurations that can be used to
streamline the configuration process and ensure consistency. We
demonstrated how to use Terraform to define a base configuration and then
use Python to modify it according to specific requirements. In addition, we
discussed how to automate system identification by combining Python and
Terraform. We described how this process can be used to gather information
about the system's hardware and software configurations, network settings,
and other important system details. We provided a sample demonstration of
how to use Python and the boto3 library to interact with the Amazon Web
Services (AWS) API to obtain information about an AWS instance.

We also covered how to automate system patches and updates using Python.
We described the importance of keeping systems up to date with the latest
security patches and software updates and provided a sample demonstration
of how to use Python and the paramiko library to automate the patching
process for an Ubuntu server. Finally, we discussed how to identify unstable
and non-compliant configurations using Python and configuration
management tools. We provided a sample demonstration of how to use
Python and the nornir library to identify and correct configuration errors, as
well as to ensure compliance with policies and standards.

CHAPTER 7: MANAGING DOCKER
AND CONTAINER NETWORKS

Docker and Containers
Docker & Container Fundmentals
Docker is an open-source containerization platform that has revolutionized
the way developers package, deploy, and manage applications.
Traditionally, applications were developed and deployed on physical servers
or virtual machines that were provisioned with the required operating
system and dependencies. This approach had limitations, such as being
resource-intensive and inflexible. Docker addresses these limitations by
using containerization to create self-contained and portable containers that
can be run consistently across different environments.

A container is a lightweight and portable package that includes everything
an application needs to run, such as code, runtime, system tools, libraries,
and settings. Containers are isolated from the host system and other
containers, ensuring that they can run consistently and without interference.
Docker uses a layered file system to optimize storage and reduce
redundancy, making containers more efficient and faster to deploy.

Docker provides a set of tools and services that enable developers to create,
build, test, and deploy applications using containers. The Dockerfile is a
simple text file that defines the container image and its dependencies.
Developers can use the Dockerfile to specify the base image, add the
application code and dependencies, and configure the container settings.
Once the Dockerfile is created, developers can use the Docker build
command to create the container image. Docker also provides a centralized
registry called Docker Hub, where developers can store and share container
images. Docker Hub allows developers to collaborate and share container
images with other developers and teams, making it easier to build and
deploy applications in a distributed environment.

Benefits & Applications
One of the key benefits of using Docker is that it enables developers to
create and run applications consistently across different environments, from
development to production. This ensures that applications run the same way
in any environment, reducing the risk of errors and increasing the efficiency

of the development process. Docker also simplifies the deployment process
by providing a consistent platform that can be easily scaled up or down,
depending on the application's needs. Docker also provides features that
enable developers to monitor and manage containers in real-time. Docker
Swarm is a native clustering and orchestration tool that enables developers
to manage and deploy containers across multiple hosts. Docker Compose is
a tool that enables developers to define and run multi-container Docker
applications.

One of the key benefits of containers is isolation. Containers provide an
isolated environment for applications to run in, which means that multiple
applications can run on the same host without interfering with each other.
This is achieved by using a technology called containerization, which
isolates the application and its dependencies from the host system and other
applications running on the same host. This isolation ensures that each
application runs in its own environment, with its own resources, and
without affecting other applications on the same host. Another key benefit
of containers is portability. Containers are portable and can be run on any
system that supports the container runtime. This means that containers can
be easily moved between different environments, such as development,
testing, and production, without the need for significant changes to the
application or the host system. This portability enables developers to build
applications once and run them anywhere, which can save time and reduce
costs associated with application deployment.

In addition to isolation and portability, containers are also efficient.
Containers are lightweight and consume fewer resources than traditional
virtual machines. This is because containers share the same host operating
system and only require the resources needed to run the application and its
dependencies. This efficiency enables organizations to run more
applications on the same hardware, which can reduce costs associated with
infrastructure and maintenance. Containers have become a popular way to
package and deploy applications because they provide many benefits, such
as isolation, portability, and efficiency. These benefits have made containers
a preferred choice for modern application development and deployment, as

they enable developers to build and deploy applications faster, with greater
flexibility, and at a lower cost.

Role of Python in Containerization
Python has become an essential tool in the field of container orchestration,
which refers to the process of managing the deployment, scaling, and
operation of containers in a production environment. Container
orchestration platforms, such as Kubernetes and Docker Swarm, rely
heavily on Python for managing container networking, service discovery,
load balancing, and other networking-related tasks.

Python provides a rich set of libraries and frameworks that enable
developers to build container orchestration tools. These libraries and
frameworks help to automate various tasks related to managing Kubernetes
resources, such as pods, services, and deployments, and provide a high-
level API for interacting with the Kubernetes API server. One such library
is the Kubernetes Python client library, which provides a Pythonic way of
interacting with the Kubernetes API. With this library, developers can
automate the creation, modification, and deletion of Kubernetes resources,
such as pods, services, and deployments. The library also supports various
Kubernetes features, such as Kubernetes secrets, configmaps, and custom
resource definitions (CRDs).

Python's networking capabilities enable developers to automate the
configuration of network policies, security settings, and other network-
related settings for containers. This automation enables developers to more
easily manage complex networks and to scale their applications to meet
growing demand. For example, developers can use Python to automate the
creation of network policies that define how containers communicate with
each other and with external services.

In addition to Kubernetes, Python is also widely used in Docker Swarm,
which is a container orchestration platform that provides a simple way to
manage and orchestrate Docker containers across multiple hosts. Docker
Swarm uses Python to manage container networking, load balancing, and
service discovery. Python provides an easy-to-use interface for interacting
with the Docker Swarm API and allows developers to automate the creation
and management of Docker services.

One of the key benefits of using Python in container orchestration is its
simplicity and ease of use. Python provides a clean, easy-to-understand
syntax that makes it simple to write and read code. Additionally, Python's
extensive libraries and frameworks make it easy for developers to build
complex container orchestration tools with minimal effort. Another benefit
of using Python in container orchestration is its cross-platform
compatibility. Python code can be written once and run on multiple
platforms, making it easy to deploy container orchestration tools across
different environments. This portability enables developers to build and test
container orchestration tools on their local machines and deploy them in
production environments with minimal modifications.

Install and Configure Docker
Folllowing are the steps to install and configure Docker for Python:

Install Docker
The initial step to utilize Docker is to install it on your system. Docker
provides easy-to-follow installation instructions for various operating
systems, including Windows, macOS, and Linux, on their official website.

To install Docker, users can visit the website and choose the appropriate
installation guide for their operating system. These guides provide detailed
instructions on how to install Docker on the chosen platform, including any
prerequisite software or configuration required. Once Docker is
successfully installed, users can begin to utilize its powerful features, such
as creating, managing, and deploying containerized applications. By
containerizing applications, developers can ensure that they run consistently
across different environments, from development to production, and can
easily scale applications up or down as needed.

Install Docker Python Module
After Docker has been installed, developers can use the Docker Python
module to interact with Docker using Python. This module is available for
use. This module provides an application programming interface (API) for
Docker that is written in Python. This enables developers to create and
manage Docker containers, images, and networks using code.

Developers are able to create, start, stop, and remove Docker containers by
using the Docker Python module. Developers are also able to build, push,
and pull Docker images using this module. In addition, developers can use
the module to manage Docker networks, which includes the ability to create
new networks, delete existing networks, and attach containers to networks.
In addition to this, the Docker Python module makes it easy to monitor
Docker containers and images, retrieve the metadata associated with those
items, and make changes to the configurations of those items. This makes it
simpler for developers to integrate Docker functionality into their Python

applications, which in turn streamlines the workflows of development and
enables the creation of powerful applications that are based on containers.

You can install the module using pip, the Python package manager, by
running the following command in your terminal:

pip install docker

Create Dockerfile
Docker images can be constructed by following the instructions provided in
a configuration file known as a Dockerfile. It is made up of a series of
instructions that detail how to install and configure software, as well as how
to copy files and directories into the image, as well as which base image to
use. The Docker engine will use the Dockerfile to create a reproducible and
portable image that is easily runnable in a variety of different environments.
This image can be easily shared with others. Developers can automate the
process of creating an image by defining the build process in a Dockerfile,
which enables them to ensure that the image that is produced is consistent
and predictable.

To create a Dockerfile, you can use a text editor to create a new file named
"Dockerfile" (with no file extension) in an empty directory. In the file, you
can specify the base image, copy files into the image, and run commands to
install dependencies and configure the image.

Build Docker Image
Once you have created the Dockerfile, you can build the Docker image by
running the following command in your terminal from the directory
containing the Dockerfile:

docker build -t <image-name>

Replace <image-name> with a name for your image. The . at the end
specifies that the Dockerfile is in the current directory.

Run Docker Container

Once you have built the Docker image, you can run a container from the
image by running the following command in your terminal:

docker run --name <container-name> -p <host-port>:<container-
port> -d <image-name>

Replace <container-name> with a name for your container, <host-port>
with the port number on your host machine that you want to map to the
container port, and <container-port> with the port number on the container
that your application is listening on. Replace <image-name> with the name
of the Docker image that you built in step 4.

Test Docker Container
After you have completed the running of a Docker container, there are a
few different ways to test it. Accessing it through a web browser is one
option. This can be achieved by mapping a port on the host machine to the
port used by the container. Because of this, the container can be accessed by
using the IP address of the host machine along with the mapped port.

The Docker container can also be tested by executing a Python script that,
by making use of the Docker Python module, maintains communication
with the container. Using the Docker SDK for Python, which provides a
straightforward and effective method for programmatically interacting with
Docker containers, it is possible to achieve this goal. Using the Software
Development Kit (SDK), developers are able to create and manage
containers, images, networks, and volumes, as well as retrieve information
about the Docker environment. Developers are able to ensure that their
applications and services are running correctly and are able to handle a
variety of use cases and traffic scenarios by testing Docker containers in the
aforementioned ways.

With the above steps, you should now have Docker installed and configured
for use with Python.

Using Python to Build Docker Images
Docker images are the backbone of the Docker platform and are necessary
for the creation and distribution of modern software. They are self-
contained packages that include all of the necessary files, libraries, and
dependencies required to run a particular application or service. These
requirements can vary depending on the application or service in question.
Docker images are small in size, easily transportable, and simple to share,
which enables developers to construct, ship, and run applications in a timely
and effective manner. Docker images provide a standardised format for
packaging and distributing applications, which makes it simple to deploy
applications in a variety of environments without encountering any
compatibility problems. Because of this standardisation, developers are now
able to construct and test their applications in a manner that is both
consistent and reproducible, and they are also able to deploy their
applications with confidence, knowing that they will function as expected.

Docker images are produced by using Dockerfiles, which are text files
containing the building instructions for the image. Docker images can then
be used. During the build process, these instructions include things like
which base image to use, which files to include, and which commands to
run. Once an image has been created, it can be pushed to a Docker registry,
such as Docker Hub or a private registry, from which it can be accessed and
pulled by other users. Docker Hub is one example of a public Docker
registry. Because of this, developers are able to easily share their
applications and services with other people or deploy them to various
environments, such as production, testing, or development.

Create DockerFile
To build a Docker image with Python, we first need to create a Dockerfile.
A Dockerfile is a text file that contains instructions on how to build a
Docker image. We can use a text editor such as vi or nano to create a new
file named Dockerfile in our project directory.

The first line of the Dockerfile is the base image that we want to use. For
example, if we want to use Python 3.9, we can use the following line:

FROM python:3.9

The next line is the working directory where we want to copy our
application code. For example, if we want to copy our code to a directory
named /app, we can use the following line:

WORKDIR /app

Next, we can copy the requirements.txt file that contains the list of
dependencies required by our application. We can use the following line to
copy the requirements.txt file to the working directory:

COPY requirements.txt .

Install Dependencies
After that, we can run the following command to install the dependencies:

RUN pip install --no-cache-dir -r requirements.txt

Next, we can copy our application code to the working directory using the
following line:

COPY . .

Define Command
Finally, we can define the command that needs to be executed when the
container starts. For example, if our main script is named app.py, we can
use the following line:

CMD ["python", "app.py"]

Build Docker Image
Once we have created the Dockerfile, we can build the Docker image using
the following command:

docker build -t myapp:1.0 .

This command will build a Docker image with the tag myapp:1.0 using the
Dockerfile in the current directory.

Run Container
After building the Docker image, we can run a container using the
following command:

docker run -p 8080:8080 myapp:1.0

This command will run a container with the image myapp:1.0 and map port
8080 of the container to port 8080 of the host.

In summary, building Docker images with Python involves creating a
Dockerfile with the necessary instructions, installing the dependencies,
copying the application code, and defining the command to be executed.
Once the Docker image is built, we can run a container using the image and
access the application running inside the container.

Running Containers
The following is an example of a Python programme that runs a Docker
container to show how it should be done. Using this programme, you will
be able to specify the name of the container, the image, and the command
that will run inside the container. It interacts with the Docker engine using
the Docker SDK for Python, which then allows it to execute the container.

import docker
Create a Docker client object
client = docker.from_env()
Define the container image and command to run
image = 'nginx'
command = 'echo "Hello, World!"'
Run the container
container = client.containers.run(image, command, detach=True)
Print the container ID
print(f'Container ID: {container.id}')

This program uses the Docker SDK for Python to create a Docker client
object, which is used to interact with the Docker engine running on the host
machine. It then specifies the container image to use (nginx) and the
command to run (echo "Hello, World!"). Finally, it starts the container in
detached mode and prints the ID of the new container.

To run this program, you will need to have Docker installed on your
machine and have the docker Python package installed. You can install the
package using pip:

pip install docker

Once the package is installed, save the code above in a Python file (e.g.
run_container.py) and run it using the command:

python run_container.py

This will start the container and print its ID to the console. You can verify
that the container is running using the docker ps command in your terminal.

Automate Running of Containers
Managing containers manually can be a time-consuming and potentially
error-prone process. To get around this obstacle, you can interact with the
Docker daemon using Python and the Docker Application Programming
Interface (API), which will automate the process of starting, stopping, and
managing containers.

Using Docker's Application Programming Interface (API), you can create
scripts or applications that automatically manage containers based on the
requirements that you specify. This may involve activities such as the
creation of new containers, the beginning or ending of already running
containers, or the modification of container configurations. You can also
integrate container management into your existing toolset or infrastructure
if you have Python's ability to interact with the Docker daemon. Python
provides this capability. Monitoring and alerting systems, as well as
pipelines for continuous integration and deployment, can be included in this
category. You can decrease the likelihood of making mistakes, enhance
consistency, and substantially boost productivity by implementing an
automated system for managing containers. This is of utmost importance in
environments that are larger and more complex, as manual container
management can quickly become overwhelming in those settings.

Following is an example of how to automate the running of a container
using Python :

I nstall Docker SDK for Python
pip install docker

Import Docker SDK
import docker

Connect to Docker Daemon
client = docker.from_env()

Define Container Configuration
container_config = {
 'image': 'nginx:latest',
 'ports': {
 '80/tcp': 8080,
 },
}

Create Container
container = client.containers.create(**container_config)

Start the Container
container.start()

This will create and start a container running the latest version of the Nginx
web server image, with port 80 on the container mapped to port 8080 on the
host.

You can also automate the stopping and removal of containers using the
Docker SDK.

Stop and Remove Containers
In the context of containerization, managing containers is an essential
component in ensuring that container-based applications run faultlessly and
without interruption. It is imperative to terminate and remove a container as
soon as its use is no longer required. Failing to do so may result in the
container continuing to run when this is not necessary or in the
consumption of resources.

The following is an illustration of how to terminate and delete a container
that was created in the preceding illustration:

Stop the container
container.stop()

Remove the container
container.remove()

Automating the running of containers using Python can greatly simplify the
process of managing containers and deploying applications. With Python's
powerful networking capabilities and the Docker SDK, you can build
highly customized and flexible container automation solutions.

Container Network Management
Overview
The success of containerization technology is directly tied to the
networking capabilities of containerization. It is essential to enable
containers to communicate with one another as well as with systems that
are located outside of the container. Only then can the full potential of
containerization be realised. When this happens, the concept of container
networking enters the picture. It makes seamless connectivity and
communication between containers possible, as well as connectivity
between containers and the underlying infrastructure.

The management of container networks requires a variety of activities,
including the configuration, monitoring, and maintenance of the network
connections that exist between containers and the infrastructure that is
associated with them. Especially when dealing with large-scale container
deployments, this can be a task that consumes a lot of time and presents a
number of challenges. Python provides a number of libraries and tools that
can be used to automate the management of container networks, which can
be used to simplify this process and make it more efficient. The Docker
SDK for Python is one of the most widely used libraries. It offers a Python
interface for interacting with the Docker API and is one of the reasons for
its popularity.

Docker's Software Development Kit (SDK) for Python is a high-level
library that abstracts away the complexities of working directly with the
Docker API. It offers a straightforward and understandable application
programming interface (API) that makes it easy for developers to manage
container networks. Docker networks can be created and managed by
developers with the help of this library. Developers can also attach
containers to Docker networks and configure network settings like IP
addresses and port mappings. In addition to the Docker SDK for Python,
there are a number of other Python libraries that are available for use in the
process of container networking. A good illustration of this would be the
Kubernetes Python client, which is a robust library that allows for the
management of container networks within a Kubernetes cluster. It enables

users to create, modify, and delete Kubernetes network resources such as
Services, Endpoints, and Ingresses by providing a high-level interface for
interacting with the Kubernetes API. This interface is provided by the
Kubernetes API.

Managing Container Networks with Docker SDK
Following is a step-by-step sample program illustration of how to manage
container networks using Python and the Docker SDK:

Install the Docker SDK for Python

pip install docker

Import the Docker SDK module into your Python script

import docker

Create a Docker client object

client = docker.from_env()

This will create a Docker client object that can be used to interact with the
Docker API.

Create a new container network

network = client.networks.create('my_network')
This will create a new container network with the name "my_network". You
can configure the network settings by passing in additional arguments to the
create() method.

Connect a container to the network

container = client.containers.get('my_container')
container.connect('my_network')

This will connect the container with the name "my_container" to the
"my_network" network. You can disconnect a container from a network by

calling the disconnect() method instead.

List all container networks

networks = client.networks.list()
for network in networks:
 print(network.name)

This will list all of the container networks that are currently configured on
the Docker host.

Remove a container network

network = client.networks.get('my_network')
network.remove()

This will remove the "my_network" container network from the Docker
host.

By using Python and the Docker SDK, you can automate the management
of container networks and easily configure, monitor, and maintain network
connections between containers and their associated infrastructure.

Summary
In this chapter, we discussed Docker and its use in containerization
technology. We began by understanding how Docker enables developers to
package and distribute their applications in a standardized and efficient
manner. We then went on to discuss the benefits of Docker and containers,
including increased portability, scalability, and reliability. We also discussed
how Python can be used in conjunction with Docker to manage container
networks and automate container operations.

To get started with Docker and Python, we first needed to install Docker on
our system. We then discussed the concept of Docker images and how to
build them using Python scripts. We demonstrated how to create a Docker
image by writing a simple Python script that installs the Flask web
framework and its dependencies. We then built the image using the Docker
command-line interface and ran it as a container. Next, we discussed how to
automate the running of containers using Python. We explored the Docker
SDK for Python and showed how to use it to create and manage containers
programmatically. We wrote a simple Python script that created a new
container, started it, and checked its status.

Finally, we discussed the importance of managing container networks and
demonstrated how to do so using Python and its libraries. We explored the
Docker Compose tool and how it can be used to define and manage multi-
container applications. We also demonstrated how to use Python scripts to
create and manage custom Docker networks and how to connect containers
to these networks.

CHAPTER 8: ORCHESTRATING
CONTAINER & WORKLOADS

Container Scheduling and Workload
Automation
Container scheduling is the process of deploying and managing
containerized applications across a cluster of compute resources. It involves
the management of resources like compute, storage, and network required
for running containers. The main objective of container scheduling is to
optimize resource utilization while maintaining high availability and
scalability of containerized applications. The need for container scheduling
arises from the fact that modern containerized applications often require
complex architectures with multiple services, which must be deployed and
managed in a distributed fashion. Without proper container scheduling, it
can be challenging to manage and scale such applications across multiple
nodes in a cluster.

Automation of workload management in container scheduling can bring a
lot of benefits. It enables efficient resource allocation and utilization,
eliminates human error, and reduces the time required to manage and
deploy containerized applications. In addition, it helps in achieving high
availability and scalability, as well as cost optimization by dynamically
scaling the resources based on application demands.

Python plays a significant role in automating container workload
management. It offers a wide range of libraries and tools that simplify the
process of container scheduling and deployment. For example, tools like
Docker Compose and Kubernetes can be easily automated using Python
scripts, enabling the deployment and management of containerized
applications with ease. Python's robust networking capabilities also make it
an ideal choice for container workload automation. It can help to manage
container networks, distribute traffic, and perform load balancing, all of
which are crucial for the optimal operation of containerized applications.

Network Service Disocvery
Network service discovery is the process of automatically identifying and
locating network-based services or resources, such as servers, databases,
applications, or other network devices, within a network. It enables
applications and services to discover and interact with each other without
the need for manual configuration or intervention.

In traditional network environments, network service discovery is often
accomplished through manual configuration of DNS records, DHCP
servers, and other networking tools. This approach is time-consuming,
error-prone, and difficult to scale as the network grows. To address these
issues, automated network service discovery solutions have been
developed, such as etcd, ZooKeeper, and Consul.
Automating network service discovery has several benefits, including:

Scalability: Automated service discovery allows for easy
scaling of applications and services by automatically
discovering and registering new instances.
Fault tolerance: Service discovery tools can detect when a
service goes offline and route traffic to another available
instance.
Flexibility: Automated service discovery can be used to manage
services running in a variety of environments, including on-
premises, cloud, and hybrid deployments.
Simplification: Automated service discovery simplifies network
management by eliminating the need for manual configuration
and reducing the potential for errors.

Etcd is a distributed key-value store that provides a reliable way to store
and manage configuration data, metadata, and other types of information in
a distributed system. It is commonly used for service discovery, distributed
coordination, and configuration management. Etcd provides a simple API
for storing and retrieving data, and supports watch events that allow clients
to receive notifications when changes occur. Etcd is often used in
conjunction with other tools, such as Kubernetes, to automate container

orchestration and workload management. Kubernetes relies heavily on etcd
for storing and managing cluster state, including information about running
services, nodes, and workloads. Etcd helps ensure that Kubernetes clusters
remain highly available and resilient to failures.

In addition to Kubernetes, etcd can also be used with other container
orchestration platforms, such as Docker Swarm and Apache Mesos, as well
as with other distributed systems that require reliable data storage and
coordination.

In summary, network service discovery is a crucial component of modern
distributed systems, enabling applications and services to interact with each
other in a dynamic and scalable manner. Automated service discovery
solutions, such as etcd, provide a reliable and flexible way to manage
service discovery and configuration in distributed environments. By
automating network service discovery, organizations can simplify network
management, increase scalability, and improve application resiliency and
fault tolerance.

Understanding etcd
Etcd is an open-source, distributed, and consistent key-value store used for
securely storing and managing critical data such as configuration data,
application state data, and distributed locking. It was initially developed by
CoreOS and is now maintained by the Cloud Native Computing Foundation
(CNCF).

Etcd provides a simple API for distributed systems to store and manage
configuration data, and it uses the Raft consensus algorithm to ensure data
consistency and fault tolerance. Raft is a consensus algorithm that allows
distributed systems to maintain consistency and availability, even in the
event of network failures or other issues. Etcd uses Raft to maintain a
consistent view of the cluster, which ensures that the data stored in etcd is
always up to date.

Etcd is often used in container orchestration systems like Kubernetes to
store and manage configuration data. In a Kubernetes cluster, etcd stores the
entire state of the cluster, including configuration data, state data, and
metadata about running containers. Etcd allows Kubernetes to scale to
hundreds or thousands of nodes while maintaining consistency and
reliability.

Etcd is also used in other distributed systems, such as database clusters and
microservice architectures. In a microservice architecture, etcd can be used
to store and manage service discovery information, such as the IP addresses
and ports of running services. This allows services to communicate with
each other without the need for hard-coded IP addresses or DNS lookups.

One of the key benefits of etcd is its simplicity. The API is easy to use, and
the data model is straightforward. Etcd also provides strong consistency
guarantees, which means that data is always up to date and accurate.
Additionally, etcd is highly available and fault-tolerant, which makes it a
reliable choice for storing critical data in distributed systems.

Overall, etcd is a powerful tool for storing and managing configuration data
in distributed systems. Its simplicity, strong consistency guarantees, and

fault tolerance make it a popular choice for container orchestration systems,
microservice architectures, and other distributed systems.

Service Discovery using etcd
Install etcd
Installing etcd is the first thing that needs to be done in order to begin the
process of service discovery. The storing and retrieval of service metadata is
made easier with the assistance of this distributed key-value store. Installing
etcd binary requires either downloading it from the official website or using
a package manager. Both of these options are available. It is strongly
suggested that you obtain the most recent stable release for your operating
system. After it has been installed, you will be able to begin using etcd to
discover and register services on your computer system. You will be able to
construct a fault-tolerant and scalable infrastructure that delivers faultless
service discovery capabilities once etcd has been implemented.

Start etcd
The subsequent step, which occurs after a successful installation of etcd, is
to start the etcd server. Execution of the etcd binary or the use of a system
service are both viable options for achieving this goal. Both options are
discussed further below. By default, etcd will listen on two ports: port 2379
will handle client requests, and port 2380 will be used exclusively for peer-
to-peer communication between nodes. It is important to note that the etcd
configuration file allows for the modification of these default port numbers
so that they can be tailored to specific requirements. After the etcd server
has been installed and is operational, it can be put to use in a variety of
contexts for distributed coordination, service discovery, and other purposes
that are functionally equivalent.

Register Services
Creating a key-value pair in etcd allows you to register a service with the
service registry. This can be done when you want to use etcd. The name of
the service is represented by the key, and the location of the service is
indicated by the value. You can accomplish this by employing the etcdctl
command-line tool or by sending HTTP requests to the etcd application
programming interface. The procedure of registering a service with etcd
makes it possible for other services that need to communicate with it to find

it and make use of it. In distributed systems, where service discovery is
essential to ensure smooth communication between the various services,
this mechanism plays a critical role in ensuring the system's overall
functionality.

Discover Services
In order to locate services in a distributed system, it's necessary to query the
etcd key-value store for the specific service name and retrieve its location
information. This can be achieved by utilizing either the etcdctl command-
line tool or making HTTP requests to the etcd API. By leveraging the etcd
key-value store, developers can effectively manage and discover services in
a distributed environment, ensuring seamless communication and
coordination between various components of the system.

Automate Service Discovery
To automate service discovery, you can use a programming language like
Python to interact with the etcd API and register or discover services. There
are also Python libraries like etcd3 and python-etcd that provide a
convenient way to interact with etcd from Python.
Below is a Python code snippet that showcases the process of service
discovery by utilizing etcd. With this code, developers can understand the
steps involved in discovering services and integrating them into their
applications.

import etcd3
Connect to etcd
etcd = etcd3.client(host='localhost', port=2379)
Register a service
etcd.put('/services/my-service', 'http://localhost:8000')
Discover a service
result = etcd.get('/services/my-service')
if result:
 print(result[0])

In the above sample program, the script connects to the etcd server running
on localhost and port 2379. It then registers a service called "my-service"
with the location "http://localhost:8000" by putting a key-value pair in etcd.
Finally, it discovers the location of the "my-service" service by getting the
value associated with the "/services/my-service" key in etcd.

You would also need to handle errors and exceptions when interacting with
the etcd API.

Sample Program to Automate Service
Discovery
The following is a practical example of how to automate service discovery
with Python and etcd. This program illustrates how to use Python to
connect to an etcd server, register a service, and discover available services
in a network environment.

First, we need to install the etcd Python client library. We can install it using
the following command:

pip install etcd3

Once we have installed the etcd Python client library, we can use the
following Python code to register a service with etcd:

import etcd3
Create an etcd client instance
client = etcd3.client(host='localhost', port=2379)
Register a service with etcd
client.put('/services/web/1', 'http://10.0.0.1:8080')

In the above code, we first create an etcd client instance by specifying the
host and port of the etcd server. We then register a service with etcd by
putting a key-value pair where the key represents the name of the service
and the value represents the endpoint where the service can be accessed.

We can use the following Python code to get a list of all the services
registered with etcd:

import etcd3
Create an etcd client instance
client = etcd3.client(host='localhost', port=2379)
Get a list of all the services
services = client.get_prefix('/services/')
for service in services:

 print(service.key, service.value)

In the above code, we first create an etcd client instance. We then get a list
of all the services registered with etcd by using the get_prefix method of the
etcd client instance. This method returns a list of all the key-value pairs that
have the specified prefix. We then loop through the list of services and print
out the key and value of each service.

We can also use the following Python code to watch for changes to the
services registered with etcd:

import etcd3
Create an etcd client instance
client = etcd3.client(host='localhost', port=2379)
Watch for changes to the services
watcher = client.watch_prefix('/services/')
for event in watcher:
 if event.event_type == 'PUT':
 print('Service added:', event.key, event.value)
 elif event.event_type == 'DELETE':
 print('Service removed:', event.key, event.value)

In the above code, we first create an etcd client instance. We then create a
watcher for changes to the services registered with etcd by using the
watch_prefix method of the etcd client instance. This method returns a
generator that yields events whenever there is a change to the key-value
pairs that have the specified prefix. We then loop through the events and
print out a message indicating whether a service was added or removed,
along with the key and value of the service.

By automating service discovery with Python and etcd, we can easily
register and discover services in a dynamic environment, making it easier to
manage and scale complex applications.

Kubernetes Load Balancers
Kubernetes is an open-source container orchestration platform that is
widely used in the industry for managing containerized applications. In a
Kubernetes cluster, multiple pods can be running the same application, and
these pods need to be accessed by the users. To achieve this, Kubernetes
provides a Load Balancer service that distributes traffic across multiple
pods and ensures high availability and scalability.

Load Balancers in Kubernetes are used to distribute traffic across multiple
pods running the same application. They work by distributing incoming
traffic across multiple backend pods using a round-robin or random
algorithm. Load Balancers provide several benefits, including:

High Availability: Load Balancers ensure that traffic is always
routed to available pods, even if some of the pods are down or
unreachable. This ensures high availability and uptime for the
application.
Scalability: Load Balancers can distribute traffic across
multiple pods, which allows for horizontal scaling of the
application. As more traffic comes in, additional pods can be
added to the backend, and the Load Balancer will distribute the
traffic accordingly.
Security: Load Balancers can provide SSL termination, which
ensures that traffic is encrypted between the client and the Load
Balancer. This enhances security and protects against potential
attacks.

Kubernetes Load Balancers provide several features that benefit
networking, including:

Service Discovery: Load Balancers provide a single endpoint
that can be used to access multiple pods running the same
application. This simplifies service discovery and makes it
easier to access and manage multiple pods.

Load Balancing Algorithms: Load Balancers can use different
algorithms to distribute traffic across multiple backend pods.
This allows for more fine-grained control over traffic
distribution and can help optimize performance.
Health Checks: Load Balancers can monitor the health of
backend pods and automatically route traffic away from
unhealthy or failing pods. This ensures that traffic is always
routed to healthy and available pods, which enhances reliability
and uptime.

Load balancers ensure that containerized applications have improved
reliability and uptime by distributing traffic across multiple instances of a
service and preventing any one instance from becoming overloaded. This
prevents any one instance from becoming overwhelmed. This results in a
system that is both highly available and resilient, meaning that it can
withstand spikes in traffic and manage high volumes of traffic without
experiencing any downtime.

Kubernetes Load Balancers are able to provide more advanced features
thanks to tools like HAProxy, which enable them to perform tasks like SSL
termination, content-based routing, and session persistence. This further
improves security by encrypting traffic and routing it to the appropriate
backend service based on the criteria that have been specified.

Exploring HAProxy
HAProxy is a popular choice for use as a load balancing software in
production environments because of its dependability, scalability, and high-
performance capabilities. It is an open-source programme. It is possible to
deploy it either on-premises or in the cloud, and it can be used for many
different kinds of applications and protocols, including HTTP, TCP, and
UDP.

HAProxy is built with a multi-process architecture, which enables it to
manage a large number of concurrent connections and requests. This is a
key feature of the product. It uses a single master process that manages
multiple worker processes, each of which can handle multiple connections
simultaneously. This master process is managed by another master process.
Because of its architecture, HAProxy is capable of horizontal scaling,
which enables it to manage large volumes of traffic while also preserving its
high availability.

HAProxy is able to effectively distribute traffic across multiple backend
servers because it supports a number of different load balancing algorithms.
Some of these algorithms include round-robin, least connections, and IP
hash. In addition to that, it offers advanced features such as SSL
termination, content-based routing, and health checks, all of which
contribute to an improvement in security, flexibility, and dependability.

HAProxy can be utilised in the context of Kubernetes load balancing as a
Kubernetes Ingress Controller to direct traffic to containerized services that
are running in a Kubernetes cluster. An Ingress Controller is a type of
Kubernetes object that performs the function of a reverse proxy by directing
incoming requests to the correct backend service. This behaviour is
determined by the rules that are defined in the Ingress resource.

If you want to use HAProxy as a Kubernetes Ingress Controller, you will
need to deploy it as either a Kubernetes Deployment or a DaemonSet. This
choice is determined by the topology of the cluster. After it has been
deployed, the HAProxy Ingress Controller can be configured by making use

of the Kubernetes Ingress resources. These resources define the routing
rules that will be applied to incoming traffic.

The HAProxy Kubernetes Ingress Controller offers a number of advantages,
including the following:

Scalability: HAProxy has the ability to scale horizontally to
manage large volumes of traffic, making it possible to
guarantee that containerized services are always accessible and
quick to respond.
Load Balancing: It is achieved through the use of HAProxy's
proprietary load balancing algorithms, which ensure that
incoming traffic is efficiently distributed across all backend
services.
Security: HAProxy is capable of terminating SSL connections,
encrypting and decrypting traffic, and protecting against man-
in-the-middle attacks and eavesdropping.
Reliability: The health checks and automatic failover
capabilities offered by HAProxy guarantee that containerized
services will continue to be accessible and responsive at all
times, even in the event that the underlying backend server
fails.
Flexibility: HAProxy's content-based routing enables
developers to define routing rules based on specific criteria,
such as URL path, HTTP headers, or source IP address, which
allows for more granular control over how traffic is routed.
HAProxy's other benefit is that this gives users more options.

Manage Load Balancer Servers using HAProxy
Following are the simplified steps to write an automation script in Python to
add or remove servers from a load balancer using HAProxy:

Import Required Libraries
We need to import the requests library to make API calls to the HAProxy
server and the json library to handle the response data in JSON format.

Define API Endpoint URLs
We need to define the URLs of the HAProxy server endpoints to add or
remove servers from the load balancer. For example, the URL for adding a
server to the load balancer might look like:

http://<haproxy-ip-address>:<port>/servers?server=<server-ip-
address>&port=<server-port>

Define Function to Add or Remove Servers
We need to define a function that takes the IP address and port number of
the server that needs to be added or removed from the load balancer as
input. This function will make an API call to the HAProxy server endpoint
and add or remove the server from the load balancer as per the input.

Call Function
Finally, we can call the function with the IP address and port number of the
server to add or remove it from the load balancer. These are the simplified
steps to write an automation script in Python to add or remove servers from
a load balancer using HAProxy.

Sample Program to Manage Load Balancer
Servers
The code snippet presented below showcases a Python program that
automates the process of adding and removing servers from an HAProxy
load balancer. This program utilizes the HAProxy API to facilitate
communication with the load balancer and make the necessary changes to
the server pool. By automating this process, developers and IT
professionals can save time and ensure that their load balancing
infrastructure is always up to date with the latest server configurations.
With the flexibility and power of Python, this program can be customized
and integrated into larger automation workflows to further streamline the
deployment and management of web applications.

import subprocess
Function to add server to HAProxy
def add_server(ip_address, port):
 command = f"echo ' server web{port} {ip_address}:{port}
check' | sudo tee -a /etc/haproxy/haproxy.cfg > /dev/null"
 subprocess.run(command, shell=True)
 subprocess.run("sudo systemctl reload haproxy", shell=True)
 print(f"Added server {ip_address}:{port} to HAProxy")
Function to remove server from HAProxy
def remove_server(ip_address, port):
 command = f"sudo sed -i '/{ip_address}:{port}/d'
/etc/haproxy/haproxy.cfg"
 subprocess.run(command, shell=True)
 subprocess.run("sudo systemctl reload haproxy", shell=True)
 print(f"Removed server {ip_address}:{port} from HAProxy")
Example usage: add server with IP address 192.168.0.2 and port
8000 to HAProxy
add_server("192.168.0.2", 8000)

Example usage: remove server with IP address 192.168.0.3 and
port 8000 from HAProxy
remove_server("192.168.0.3", 8000)

This script uses the subprocess module to execute shell commands. The
add_server function takes two parameters, the IP address and port of the
server to be added, and appends a new line to the HAProxy configuration
file with the server's details. It then reloads the HAProxy service to apply
the changes. The remove_server function takes two parameters, the IP
address and port of the server to be removed, and uses sed to remove the
line containing the server's details from the HAProxy configuration file. It
then reloads the HAProxy service to apply the changes.

To use this script, you would need to have HAProxy installed and
configured on your system, and the script would need to be run as a user
with sufficient privileges to modify the HAProxy configuration and reload
the service. This script can be easily adapted to work with other load
balancers, by modifying the commands to add and remove servers. The
basic logic remains the same - add or remove a line from the load balancer's
configuration file, and reload the service to apply the changes.

Automate Add/Manage SSL Certificate
Using Cryptography Library to Automate SSL
Following is an example of how to automate the creation and configuration
of SSL certificates in Python using the cryptography library:

from cryptography import x509
from cryptography.hazmat.backends import default_backend
from cryptography.hazmat.primitives import hashes
from cryptography.hazmat.primitives.asymmetric import rsa
from cryptography.x509.oid import NameOID
import datetime
Generate a new RSA private key
private_key = rsa.generate_private_key(
 public_exponent=65537,
 key_size=2048,
 backend=default_backend()
)
Generate a new X.509 certificate
subject = issuer = x509.Name([
 x509.NameAttribute(NameOID.COUNTRY_NAME, "US"),

 x509.NameAttribute(NameOID.STATE_OR_PROVINCE_NAME
, "California"),
 x509.NameAttribute(NameOID.LOCALITY_NAME, "San
Francisco"),
 x509.NameAttribute(NameOID.ORGANIZATION_NAME, "My
Company"),
 x509.NameAttribute(NameOID.COMMON_NAME,
"example.com"),
])
issuer_serial_number = x509.random_serial_number()

not_before = datetime.datetime.utcnow()
not_after = not_before + datetime.timedelta(days=365)
builder = x509.CertificateBuilder()
builder = builder.subject_name(subject)
builder = builder.issuer_name(issuer)
builder = builder.public_key(private_key.public_key())
builder = builder.serial_number(issuer_serial_number)
builder = builder.not_valid_before(not_before)
builder = builder.not_valid_after(not_after)
builder = builder.add_extension(

 x509.SubjectAlternativeName([x509.DNSName(u"example.com")
]),
 critical=False,
)
certificate = builder.sign(
 private_key=private_key, algorithm=hashes.SHA256(),
 backend=default_backend()
)
Write the private key and certificate to disk
with open("example.com.key", "wb") as f:
 f.write(private_key.private_bytes(
 encoding=serialization.Encoding.PEM,
 format=serialization.PrivateFormat.PKCS8,
 encryption_algorithm=serialization.NoEncryption()
))
with open("example.com.crt", "wb") as f:
 f.write(certificate.public_bytes(
 encoding=serialization.Encoding.PEM,
))
Step-by-step Illustration of Sample Program

In this sample program, we see an example of how to use the cryptography
library in Python to generate an RSA private key, create an X.509
certificate, and save them to disk. This process is an important step in
setting up SSL/TLS for web servers or network services. The cryptography
library provides a high-level interface to cryptographic algorithms and
protocols, making it easy for developers to incorporate strong cryptography
into their applications. In this program, we use two modules from the
cryptography library: rsa and x509.

The first step in the program is to generate an RSA private key using the
rsa.generate_private_key() function. This function takes two parameters:
the public_exponent and the key_size. The public_exponent is usually set to
65537, a commonly used value that provides strong security. The key_size
determines the size of the key in bits, with larger keys providing stronger
security. Once the private key is generated, we move on to creating an
X.509 certificate using the x509.CertificateBuilder() class. X.509 is a
widely used standard for digital certificates that are used to secure online
transactions, such as those used in HTTPS.

To create the certificate, we set various parameters using methods on the
CertificateBuilder object. First, we set the subject and issuer names. The
subject name identifies the entity that the certificate is being issued to,
while the issuer name identifies the entity that issued the certificate. These
names are typically specified as X.500 distinguished names, which are
hierarchical strings that identify entities. Next, we set the public key for the
certificate, which we obtained from the private key. This public key will be
used by clients to encrypt data sent to the server.

We also set a serial number for the certificate, which is a unique identifier
that distinguishes it from other certificates. The validity period is set by
specifying a start and end date for the certificate, which determines the
period of time that the certificate is valid. Finally, we add any extensions to
the certificate that are required. In this case, we add a Subject Alternative
Name extension with the value "example.com", which allows the certificate
to be used for multiple domains.

Once we have set all the necessary parameters, we sign the certificate using
the private key that we generated earlier. This ensures that the certificate
cannot be tampered with or forged. Finally, we write the private key and
certificate to disk using the private_key.private_bytes() and
certificate.public_bytes() methods, respectively. They can be later used to
configure SSL/TLS on a web server, load balancer, or other network
service.

Manage Container Storage
To manage container storage using Python and its libraries, we can use the
Docker SDK for Python. The Docker SDK for Python is a Python module
that provides a simple interface for managing Docker containers, images,
and networks.

Sample Program
Following are the steps to manage container storage using Python and its
libraries:

Install the Docker SDK for Python:

pip install docker

Import the Docker SDK module:

import docker

Create a Docker client object:

client = docker.from_env()

Create a container:

container = client.containers.create('ubuntu', command='/bin/bash',
tty=True, stdin_open=True)

Start the container:

container.start()

Mount a volume to the container:

container_mount =
client.containers.get(container.id).mount('/tmp/myvolume')

Create a file in the mounted volume:

with open(container_mount.path + '/test.txt', 'w') as f:

 f.write('Hello, world!')
Stop the container:

container.stop()

Remove the container:

container.remove()

Step-by-step Illustration of Sample Program
In the above sample program, we create a Docker client object and then
create a container with the Ubuntu image. We start the container and then
mount a volume to the container. We create a file in the mounted volume
and then stop and remove the container.

By using the Docker SDK for Python, we can manage container storage in a
simple and efficient way. We can create, start, stop, and remove containers,
as well as mount volumes to the containers and create files in the mounted
volumes. We can also manage Docker networks and images using the
Docker SDK for Python.

Necessity of Container Performance
Why Container Performance?
Container performance refers to the ability of a containerized application to
deliver the required level of performance, efficiency, and scalability.
Containers have become popular because they provide a lightweight,
efficient, and flexible way to package, deploy, and run applications across
different environments. However, like any other technology, containers also
come with performance-related challenges that need to be addressed.

Container Performance KPIs
The performance of containers can be measured using different Key
Performance Indicators (KPIs) such as:

Resource Utilization

This KPI measures how efficiently resources like CPU, memory, and
storage are being used by a containerized application. High resource
utilization can lead to performance degradation and even application
failure.

Latency
This KPI measures the time taken by the application to respond to a request.
High latency can lead to poor user experience and decreased productivity.

Throughput
This KPI measures the number of requests processed by the application per
unit time. High throughput indicates good performance, while low
throughput can indicate performance issues.

Scalability
This KPI measures how well the application can scale horizontally or
vertically to handle increased traffic or workload.

Availability
This KPI measures the percentage of time the application is available and
accessible to users. High availability is critical for mission-critical
applications.

To ensure optimal container performance, it is important to continuously
monitor and optimize these KPIs. This can be achieved using various tools
and techniques such as performance monitoring, load testing, and container
orchestration platforms like Kubernetes. Python can also be used to
automate performance monitoring, analysis, and optimization tasks.

Setting Up Container Performance Monitoring
Effective container orchestration requires careful monitoring of container
performance. Fortunately, Python and its many libraries can be used to track
and analyze container performance metrics. The following program
provides a practical example of how this can be done in practice.

Install the Required Libraries
We will be using the docker and psutil libraries to monitor container
performance. You can install them using pip:

pip install docker psutil

Import Required Libraries
import docker
import psutil

Connect to Docker API
client = docker.from_env()

Get Container List
containers = client.containers.list()

Pull Performance Metrics
for container in containers:
 stats = container.stats(stream=False)
 cpu_percent = psutil.cpu_percent(interval=1)
 memory_percent = psutil.virtual_memory().percent
 network_io_counters = psutil.net_io_counters()

Print Container Metrics
print(f"Container: {container.name}")

print(f"CPU usage: {stats['cpu_stats']['cpu_usage']['total_usage']}")
print(f"Memory usage: {stats['memory_stats']['usage']}")
print(f"Network usage: {network_io_counters.bytes_sent} bytes
sent, {network_io_counters.bytes_recv} bytes received")

The stats object contains CPU, memory and network usage statistics for the
container. The cpu_percent variable contains the total CPU usage
percentage for the host machine. The memory_percent variable contains the
memory usage percentage for the host machine. The network_io_counters
variable contains the network I/O statistics for the host machine.

Run the script and view the container metrics. You can run the script and
view the container metrics. The script will display the container name, CPU
usage, memory usage and network usage metrics.

Container: nginx
CPU usage: 87901777
Memory usage: 12033024
Network usage: 58750719 bytes sent, 41483205 bytes received

By using Python and its libraries, we can easily monitor container
performance metrics and ensure that our containers are running smoothly.

Automated Rolling of Updates
Automating rolling updates is an important part of maintaining a
containerized application. It ensures that the application is always running
on the latest version of the code while minimizing downtime. In this sample
program illustration, we will use Python to automate rolling updates of a
simple Flask application running in a Kubernetes cluster.

We will assume that the Flask application is already deployed and running
in the Kubernetes cluster, and that the Docker image for the application has
been updated with new code.

Get Current Deployment Object
We will use the kubernetes Python library to get the current deployment
object for the Flask application.

from kubernetes import client, config
config.load_kube_config() # Use local kubeconfig
v1 = client.AppsV1Api()
deployment_name = "flask-app-deployment"
namespace = "default"
deployment =
v1.read_namespaced_deployment(deployment_name, namespace)

Update Deployment Object
Next, we will update the deployment object with the new Docker image.
We will set the deployment's spec.template.spec.containers.image field to
the new Docker image.

new_image = "my-registry/flask-app:latest"
deployment.spec.template.spec.containers[0].image = new_image
Update the deployment
v1.replace_namespaced_deployment(
 name=deployment_name,

 namespace=namespace,
 body=deployment
)

Check Status of Deployment Rollout
After updating the deployment, we will check the status of the rollout until
it is complete.

from kubernetes import watch
Wait for the deployment to finish rolling out
w = watch.Watch()
for event in w.stream(v1.list_namespaced_deployment,
namespace=namespace):
 if event['object'].metadata.name == deployment_name:
 if event['object'].status.ready_replicas ==
event['object'].status.replicas:
 print("Rollout complete!")
 break
w.stop()

This code uses a Watch object to continuously check the status of the
deployment. We will stop watching the deployment once the number of
ready_replicas matches the number of replicas, indicating that the rollout is
complete.

Clean Up Resources
After the rollout is complete, we will clean up any resources that were
created during the update process.

Clean up resources
w = watch.Watch()
for event in w.stream(v1.list_namespaced_pod,
namespace=namespace):
 if event['object'].metadata.labels['app'] == deployment_name:

 if event['object'].status.phase == "Succeeded":
 v1.delete_namespaced_pod(
 name=event['object'].metadata.name,
 namespace=namespace,
 body=client.V1DeleteOptions(grace_period_seconds=0)
)
 elif event['object'].metadata.labels['app'] == deployment_name +
"-old":
 v1.delete_namespaced_deployment(
 name=event['object'].metadata.labels['app'],
 namespace=namespace,
 body=client.V1DeleteOptions(grace_period_seconds=0)
)
 elif event['object'].metadata.labels['app'] == deployment_name +
"-old-service":
 v1.delete_namespaced_service(
 name=event['object'].metadata.labels['app'],
 namespace=namespace,
 body=client.V1DeleteOptions(grace_period_seconds=0)
)
w.stop()

This code uses another Watch object to clean up any resources that were
created

Summary
We started by discussing the need for container scheduling and the benefits
of workload automation. We explored how Python can help automate the
process of managing containers and discussed the various tools available to
achieve this. We then moved on to service discovery and how it can be
automated using Python and etcd. We demonstrated a sample use-case
where we used Python to automatically update etcd with information about
newly created services.

Next, we discussed the need for load balancing in Kubernetes and how it
benefits networking. We demonstrated a Python program that automatically
adds or removes servers from an HAProxy load balancer. We then explored
how Python can be used to automate the creation and configuration of SSL
certificates. We discussed the various libraries available in Python for this
purpose. Next, we discussed how container storage can be managed using
Python and its libraries. We explored the various techniques available for
this, such as mounting host directories, using named volumes, and using
remote storage systems. We then delved into container performance and
discussed the various KPIs associated with it, such as CPU usage, memory
usage, and network I/O. We demonstrated how Python can be used to
monitor container performance using the Docker API. Finally, we discussed
how rolling updates can be automated using Python. We demonstrated a
Python program that automatically updates Kubernetes Deployments to use
the latest Docker image.

Overall, this chapter covered various aspects of container orchestration,
automation, and management using Python. We discussed the various tools
and libraries available in Python to achieve these tasks and demonstrated
practical examples of their usage.

CHAPTER 9: POD NETWORKING

Pods and Pod Networking
What are Pods?
Pods serve as a fundamental building block in the Kubernetes
infrastructure, allowing for efficient and effective container orchestration.
They represent the smallest deployable unit within a Kubernetes cluster, and
can be created, scheduled, and managed with ease. Each pod encapsulates a
single instance of a process that is currently running. This provides a
lightweight and modular approach to managing containerized applications,
as each pod can be designed to perform a specific function or task within
the larger application architecture.

One of the key benefits of pods is their ephemeral nature, which allows for
rapid deployment, scaling, and replacement. Pods can be quickly spun up or
taken down as needed, enabling applications to be easily and seamlessly
updated or modified without significant downtime or disruption. This
makes pods a highly flexible and adaptable component of the Kubernetes
infrastructure. The concept of pods was first introduced in the initial release
of Kubernetes in 2014, and since that time has become an integral part of
the container orchestration process. Pods are designed to work seamlessly
with other Kubernetes components such as services, replica sets, and
deployments, providing a highly scalable and efficient approach to
managing containerized applications. In addition to their basic functionality,
pods offer a number of advanced features and capabilities. For example,
pods can be configured to share network resources and storage volumes,
allowing for more efficient use of resources and improved performance.
They can also be customized with specific security policies and access
controls, ensuring that sensitive data and applications are kept secure.

Pods beyond Containers
Before Pods were introduced, the smallest unit of deployment in
Kubernetes was containers. Pods are now the smallest unit of deployment.
Containers, on the other hand, are frequently insufficient to run a
complicated application. Applications need a number of different containers
that can collaborate with one another to form a unified whole. A web
application, for instance, might need a container for the web server in

addition to another container for the database. Pods offer a solution to this
issue because they make it possible for multiple containers to be
simultaneously deployed on a single node.

Containers that are tightly coupled to one another and that share the same
network namespace and storage volume can be grouped together using
Pods. A Pod is a collection of one or more containers that share the same
resources in terms of their network and storage. The local loopback
interface allows all of the containers that are part of a Pod to communicate
with one another while they are all running on the same node. Pods also
share the same IP address, which enables them to communicate with each
other using the same hostname. This makes pods a very convenient way to
organise distributed applications. The popularity of Pods in Kubernetes can
be traced back to a number of different causes. Providing a way to manage
multiple containers as a single unit is one of the most significant advantages
that Pods bring to the table. Because of this, it is much simpler to manage
complicated applications that call for the collaboration of multiple
containers. In addition to this, pods offer a method for managing the
lifecycle of containers. When a Pod is created, all of the containers that will
be contained within it are also created at the same time. Likewise, when a
Pod is destroyed, each and every container that was contained within the
Pod is also destroyed.

In Kubernetes clusters, there is a growing demand for improved resource
utilisation, which is another factor that is contributing to the rise of Pods.
The ability to co-locate multiple containers on a single node is made
possible by pods, which can help to reduce the amount of resources that are
wasted. This is of utmost significance in cloud environments, because
resources in these settings are frequently limited and expensive.

Networking in Pods
The connectivity between pods is an essential component of the Kubernetes
architecture. Due to the fact that Pods share the same network namespace, it
is possible for them to communicate with one another through the local
loopback interface. On the other hand, this is not enough for applications
that need to communicate between Pods that are running on different nodes.

Kubernetes offers a variety of networking solutions, such as the Kubernetes
Service and the Pod Network, to make it possible for multiple nodes to
communicate with one another.

The Kubernetes Service offers a means by which multiple Pods can be
presented to users as a single service. Clients are able to connect to a
Service if it has been given a static IP address and a DNS hostname. This
prevents the clients from needing to know the IP addresses of the Pods that
are running underneath the Service. The Service also offers load balancing
and failover capabilities, which ensure that client requests are routed to
healthy Pods. This keeps the Service running smoothly.

The Pod Network is a dedicated network that allows for communication to
be established between Pods that are operating on various nodes. It is built
with a network overlay that encapsulates Pod traffic and routes it between
nodes. This is how it is implemented. The Pod Network can be
implemented with the help of Kubernetes's various network plugins, such as
Flannel, Calico, and Weave Net, which are all supported by Kubernetes.

It is essential to automate the process of discovering network services when
managing complex applications in Kubernetes. It becomes increasingly
difficult to manually manage network configurations within a Kubernetes
cluster as the number of Pods and Services that make up the cluster grows.
When network service discovery is automated, Kubernetes is able to
dynamically discover and manage network resources as Pods are created,
destroyed, or moved between nodes. This is made possible by Kubernetes'
ability to discover and manage network services.

To interact with Kubernetes API resources such as Pods, Services, and
Endpoints, Python provides a number of libraries and frameworks that can
be used in this capacity. For instance, the Kubernetes Python client library
offers a high-level interface for interacting with the resources provided by
the Kubernetes API. A low-level interface for interacting with the
Kubernetes API is provided by the kubernetes module, which is included in
the popular pip package manager for the Python programming language.

Setting Up Pod Network
Setting up a Pod network involves configuring the network to enable
communication between Pods running on different Nodes in a Kubernetes
cluster. In Kubernetes, a Pod network is a virtual network that connects all
the Pods in the cluster. The Pods communicate with each other using IP
addresses assigned to them by the Pod network.

Following are the several steps involved in setting up a Pod network in
Kubernetes:

Choose a Pod Network Provider
There are a variety of Pod network providers available for users to choose
from, including Flannel, Calico, and Weave Net, among others. Each
provider offers distinct features and advantages, making it crucial to select
the one that best aligns with your specific requirements. Careful
consideration of these options can enable you to optimize your Kubernetes
cluster's performance, security, and scalability.

Install Pod Network Provider
After selecting a Pod network provider, the next step is to install it onto
your Kubernetes cluster. This involves deploying a suite of network
components, including agents, controllers, and plugins. These components
work together to facilitate communication between Pods and ensure that
network traffic is properly routed within the cluster. Installing a Pod
network provider is an essential step in setting up a Kubernetes cluster and
is necessary for enabling containerized applications to communicate with
each other.

Configure Pod Network
Once the Pod network provider is installed, you need to configure it to work
with your Kubernetes cluster. This typically involves defining the network
address space, setting up routing rules, and configuring network policies.

Verify the Pod Network

Finally, you need to verify that the Pod network is working correctly by
testing communication between Pods running on different Nodes in the
cluster.

To provide a brief summary, the configuration of a Pod network is an
essential step in the process of setting up a Kubernetes cluster. It makes it
possible for Pods to communicate with one another, regardless of the Node
that they are running on, and it enables the development of more complex
applications that are distributed across multiple nodes.

Exploring Calico
Overview
Containerized applications, virtual machines, and bare-metal workloads can
all benefit from using Calico, which is a networking and network security
solution that is open source. It offers a networking solution that is both
scalable and secure, and it is compatible with a number of different cloud
providers, operating systems, and orchestrators.

Characteristics of Calico
Calico is designed for large-scale deployments and is capable of managing
millions of endpoints in addition to thousands of nodes. It is both quick and
scalable. Calico provides network security at scale by restricting network
traffic between workloads using fine-grained access control lists (ACLs).

Calico is compatible with a wide variety of cloud providers, operating
systems, and orchestrators due to its adaptability and agnostic nature
towards the underlying infrastructure. It is simple to deploy and manage.
Calico offers a straightforward and user-friendly API for the management
of network policies, and it can be deployed in a matter of minutes by
utilising well-known tools such as Kubernetes.

Calico makes use of a distributed architecture, which means that network
policies are enforced at the endpoints (that is, on the nodes where the
workloads are running), rather than on a central controller. This makes it
possible to achieve greater scalability and resilience, in addition to
improved performance.

Getting Started with Calico
To get started with Calico, you can follow these steps:

Install Calicoctl
Calicoctl is a command-line tool for managing Calico deployments. You
can install it using pip, the Python package manager:

pip install calicoctl

Initialize the Calico datastore
Calico uses etcd as its datastore. You can initialize the datastore using the
following command:

calicoctl datastore init

Configure the Calico network
Calico provides a flexible networking solution that can be configured in a
variety of ways. You can create a basic network using the following
command:

calicoctl apply -f - <<EOF
apiVersion: projectcalico.org/v3
kind: CalicoNetwork
metadata:
 name: default
spec:
 ipPools:
 - cidr: 192.168.0.0/16
EOF

This will create a Calico network called "default" with a single IP pool of
192.168.0.0/16.

Deploy Calico
Calico can be deployed using a variety of tools and platforms, including
Kubernetes, Docker, and OpenStack. You can find detailed instructions for
deploying Calico on the Calico website.
Once Calico is deployed, you can use the Calico API or command-line tool
to manage your network policies and configure your workloads.

In addition to the above steps, you may also need to configure your nodes to
use Calico as the networking solution. This typically involves installing a
Calico agent on each node and configuring it to communicate with the

Calico datastore. The exact steps for doing this will depend on your specific
deployment environment.

Overall, Calico provides a powerful and flexible networking solution for
containerized applications and other workloads. By using Calico with
Python, you can easily manage and automate your network policies and
configurations, making it easier to deploy and manage your applications at
scale.

Using Calico to Setup Pod Network
The program below is an example of how to configure a pod network using
the Calico networking plugin in Kubernetes. By following these steps, users
can create a secure and scalable network environment for their
containerized applications.

from kubernetes import client, config
from kubernetes.client.rest import ApiException
from calico_kubernetes import v1 as calico_k8s_v1
Load Kubernetes configuration
config.load_kube_config()
Create Calico custom resource definition object
calico_v1 = calico_k8s_v1.create_from_yaml()
Create the Calico custom resource definition object on
Kubernetes
api_instance = client.ApiextensionsV1beta1Api()
group = 'crd.projectcalico.org'
version = 'v1'
plural = 'ippools'
try:
 api_instance.create_custom_resource_definition(calico_v1,
group=group, version=version, plural=plural)
 print("Calico custom resource definition created")
except ApiException as e:
 print("Exception when calling ApiextensionsV1beta1Api-
>create_custom_resource_definition: %s\n" % e)
Create the Calico network policy objects
api_instance = client.CustomObjectsApi()
group = 'crd.projectcalico.org'
version = 'v1'
namespace = 'default'
resource = 'ippools'

body = {
 "apiVersion": "crd.projectcalico.org/v1",
 "kind": "IPPool",
 "metadata": {
 "name": "test-pool"
 },
 "spec": {
 "blockSize": 26,
 "cidr": "10.0.0.0/24",
 "ipipMode": "Always"
 }
}
try:
 api_instance.create_namespaced_custom_object(group, version,
namespace, resource, body)
 print("Calico network policy objects created")
except ApiException as e:
 print("Exception when calling CustomObjectsApi-
>create_namespaced_custom_object: %s\n" % e)

This program uses the Calico custom resource definition to create an IP
pool and then creates a Calico network policy object using the Kubernetes
API to apply the IP pool to the default namespace. The program first loads
the Kubernetes configuration, creates the Calico custom resource definition
object, and then creates the Calico network policy objects.

Routing Protocols
Routing protocols are a critical component of modern networking
infrastructure that enables devices and networks to communicate with one
another. These protocols determine the best path for data to travel from one
network to another, regardless of whether they are in the same physical
location or geographically dispersed.

In the context of pod networking, routing protocols are used to facilitate
communication between Kubernetes pods that are running on different
nodes within a cluster. Pods are a fundamental unit of deployment in
Kubernetes and are used to run containerized applications. They may be
distributed across multiple nodes, depending on the requirements of the
application and the resources available within the cluster. Routing protocols
play a critical role in enabling pods to communicate with each other, even
when they are not co-located on the same node. Kubernetes uses a variety
of routing protocols, including IP routing and overlay networking, to ensure
that pods can communicate with one another securely and efficiently.

IP routing is a widely used protocol that determines the most efficient path
for data to travel between different networks. Overlay networking, on the
other hand, is a network virtualization technique that allows multiple virtual
networks to run on top of a physical network. Overlay networks are
commonly used in Kubernetes to facilitate communication between pods
that are running on different nodes within a cluster.

There are several routing protocols that can be used for pod networking,
including:

Border Gateway Protocol (BGP)
BGP is an exterior routing protocol that is widely used for connecting
multiple networks together. It is a popular choice for pod networking
because it provides scalability and robustness, and it is supported by many
network vendors.

Open Shortest Path First (OSPF)

OSPF is an interior routing protocol that is used to distribute routing
information within a single network. It is a popular choice for pod
networking because it provides fast convergence times and efficient use of
network resources.

Intermediate System to Intermediate System (IS-IS)
IS-IS is an interior routing protocol that is used to distribute routing
information within a single network. It is similar to OSPF in terms of its
capabilities, but it is often used in networks that have a large number of
routers.

Routing Information Protocol (RIP)
RIP is an interior routing protocol that is used to distribute routing
information within a single network. It is a simple protocol that is easy to
configure, but it is not as scalable or efficient as OSPF or IS-IS.

Each of these routing protocols works by exchanging routing information
between network devices. The devices use this information to build a
routing table that tells them how to reach different destinations on the
network. The routing table is then used to forward packets between
different devices on the network.

In the context of pod networking, the routing protocol is used to exchange
information about the IP addresses of different pods and how to reach them.
This allows pods to communicate with each other even if they are running
on different nodes in the cluster.

The choice of routing protocol will depend on a variety of factors, including
the size of the network, the number of nodes and pods, the topology of the
network, and the specific requirements of the applications that are running
on the network. In addition to routing protocols, there are several other
technologies and protocols that can be used for pod networking, including
overlay networks, software-defined networking (SDN), and network
function virtualization (NFV). Each of these technologies has its own
strengths and weaknesses, and the choice of technology will depend on the
specific requirements of the network and the applications that are running
on it.

Exploring Cilium
Cilium is an open-source networking and security solution designed to
provide efficient and scalable networking for large-scale container and
microservices deployments. The project offers a variety of features that aim
to enhance the security and performance of containerized applications.

One of the key features of Cilium is its use of the Linux kernel's eBPF
(extended Berkeley Packet Filter) technology. eBPF is a modern, efficient
way to implement network filtering and monitoring in the kernel. Cilium
leverages this technology to provide fast, secure, and scalable
communication between containers. Cilium's eBPF-based approach offers a
number of advantages over traditional networking solutions. For example, it
provides fine-grained network policies that allow administrators to control
traffic at the container, pod, and service levels. This level of granularity can
be especially useful in large-scale container deployments where there are
multiple services and thousands of containers. In addition to network
policies, Cilium also provides Layer 7 visibility and security controls. This
enables administrators to monitor and secure container-to-container
communication at the application layer, which is especially important in
microservices architectures where services are distributed and communicate
with each other over the network. Another benefit of Cilium is its support
for multiple networking modes, including transparent mode, where Cilium
is deployed as a simple network overlay, and native routing mode, where
Cilium integrates with the host networking stack. This flexibility enables
Cilium to be used in a wide range of container environments and allows
administrators to choose the best networking mode for their specific use
case.

Key Features of Cilium
Network and application security
Cilium is an open-source networking and security solution that provides a
range of features to help secure and scale containerized applications. One of
its key features is security, providing encryption, authentication, and access
control for network traffic between containers and microservices. With

Cilium, users can rest assured that their network traffic is safe from prying
eyes and malicious attacks.

Scalable networking
Scalability is another essential factor in modern networking. As
containerization continues to grow in popularity, organizations must be able
to deploy and manage thousands of containers at scale. Cilium's use of the
Linux kernel's eBPF technology enables it to provide fast and efficient
networking for large-scale container deployments. This ensures that
applications can be deployed quickly and efficiently without sacrificing
performance or security.

Service discovery
Another critical feature of Cilium is service discovery. In a containerized
environment, services can be dynamically created and destroyed, making it
challenging to keep track of where services are running and how they are
communicating. Cilium can automatically discover and configure services
running in a container environment, providing a seamless and efficient
experience for developers and operators .

O bservability
Finally, observability is an essential aspect of any network and security
solution. Cilium provides detailed visibility into network traffic, enabling
users to identify potential security threats and troubleshoot network issues
quickly. Additionally, Cilium can be integrated with various monitoring and
tracing tools, providing a comprehensive view of network performance and
security.

Overall, Cilium is an excellent solution for organizations looking to secure
and scale their containerized applications. With its robust security features,
scalable networking, service discovery, and observability capabilities,
Cilium provides a complete solution for modern networking and security
challenges.

Cilium Architecture

It offers a modular architecture with several key components that work
together to provide comprehensive network security and management
capabilities:

Data plane
The first component of Cilium is the data plane. This component is
responsible for intercepting and processing network traffic between
containers using eBPF. eBPF, or extended Berkeley Packet Filter, is a
highly efficient and flexible technology that allows Cilium to capture and
manipulate network packets at the kernel level. Using eBPF, the data plane
of Cilium is able to enforce advanced security policies and provide
powerful network connectivity features. For example, it can perform
protocol-aware load balancing, packet filtering, and transparent encryption
of network traffic.

Control plane
The second component of Cilium is the control plane. This component is
responsible for managing the configuration of Cilium and communicating
with other components. The control plane provides a central point of
control for all Cilium-related activities and allows administrators to
configure and manage Cilium in a highly flexible and scalable way. The
control plane of Cilium is designed to be highly extensible and can integrate
with a variety of external systems, such as Kubernetes, Istio, and
Prometheus. It also supports multiple deployment modes, including
standalone mode and distributed mode, making it suitable for a wide range
of containerized environments.

Policy engine
The third component of Cilium is the policy engine. This component is
responsible for enforcing network and application security policies. Using a
highly expressive policy language, administrators can define fine-grained
policies that control how network traffic is allowed to flow between
containers. The policy engine of Cilium is capable of enforcing policies
based on a wide range of factors, such as network protocols, IP addresses,
and application-level metadata. This makes it possible to implement

complex security policies that are tailored to the specific needs of the
containerized environment.

Service discovery
Finally, Cilium includes a service discovery component. This component is
responsible for discovering and configuring services running in a container
environment. Service discovery is a critical aspect of modern containerized
environments, as it allows applications to dynamically discover and
communicate with each other without the need for manual configuration.
Cilium's service discovery component is designed to be highly scalable and
can handle large-scale container deployments with ease. It integrates
seamlessly with popular service discovery systems, such as Consul and
Kubernetes, and supports a variety of service discovery modes, such as
DNS-based and HTTP-based discovery.

In summary, its modular architecture includes a data plane that intercepts
and processes network traffic, a control plane that manages Cilium's
configuration, a policy engine that enforces network and application
security policies, and a service discovery component that enables dynamic
service discovery and configuration. Together, these components provide a
comprehensive solution for securing and managing containerized
environments at scale.

Install Cilium
Installing Cilium using Python involves several steps:

Install the Cilium CLI tool

pip install cilium-cli

Use the Cilium CLI tool to install Cilium

cilium install

Verify that Cilium is running

cilium status

Configure the Cilium network interface

cilium config map --from-file=datapath.yaml

Verify Cilium network interface is configured

cilium endpoint list

These steps assume that you already have a Kubernetes cluster set up.
Cilium can also be used with other container orchestration platforms such
as Docker Swarm and Mesos.

Automation of Network Policies
Overview
Automation of network policies involves using scripts or tools to define and
manage the rules that govern communication between different network
entities, such as containers, virtual machines, or servers. Network policies
can be used to control traffic flow, restrict access to certain resources, and
enforce security policies.

The main benefit of automating network policies is that it can save time and
effort by reducing the need for manual configuration and administration.
Automated network policies can also ensure consistency and accuracy in
the management of network resources.

Steps for Network Policies Automation
To automate network policies, one can use tools such as Kubernetes
network policies or network virtualization technologies like Calico, which
provides a declarative policy API for defining and managing network
policies. These tools allow users to define policies at the application or
workload level, rather than at the network level, making it easier to manage
policies and ensure that they are consistent across different environments.

In general, automating network policies involves the following steps:

Define the policies
The first step in automating network policies is to define the policies. This
involves identifying the network entities that need to be protected, and the
types of traffic that need to be allowed or blocked. The policies should be
designed to meet the specific needs of the organization, taking into account
factors such as security, compliance, and performance.

Determine the Rules
The next step is to determine the rules that will govern communication
between different network entities. These rules may include things like
allowing certain types of traffic to pass through firewalls, blocking traffic
from certain IP addresses, or limiting bandwidth usage for specific

applications or users. These rules should be defined clearly and precisely, to
ensure that they are implemented correctly.

Implement the policies
Once the policies and rules have been defined, the next step is to implement
them. This involves using tools or scripts to configure the relevant network
devices or systems. Depending on the size and complexity of the network,
this may involve configuring routers, switches, firewalls, or other network
devices. The implementation process should be carefully planned and
tested, to ensure that the policies are implemented correctly and that there
are no unintended consequences.

Monitor and manage the policies
The final step in automating network policies is to monitor and manage the
policies. This involves continuously monitoring the network for compliance
with the policies and adjusting them as needed. Network administrators
should use tools and techniques to detect and respond to any violations of
the policies, and should be prepared to adjust the policies as the needs of the
organization change over time.

In summary, automating network policies involves defining the policies,
determining the rules that will govern communication between different
network entities, implementing the policies, and monitoring and managing
the policies over time. This process is essential for ensuring that computer
networks are secure, compliant, and operating efficiently. By following
these steps, network administrators can help to protect their organizations
from security threats, improve network performance, and ensure
compliance with relevant regulations and standards.

Using Calico to Automate Network Policies
Following is an example Python script that demonstrates how to automate
network policies using Calico:

from calico import api
from calico.policy import Policy
Connect to Calico API using the client
client = api.Client()
Define a new policy for the application
policy = Policy(
 name="my-policy",
 order=100,
 ingress_rules=[
 {
 "action": "allow",
 "protocol": "tcp",
 "src_net": "10.0.0.0/16",
 "src_ports": [80, 443]
 }
]
)
Create the policy in Calico
client.policies.create(policy)
Apply the policy to a specific endpoint
client.endpointpolicies.apply_to_endpoint(
 policy_name="my-policy",
 hostname="myapp-1",
 orchestrator_id="kubernetes",
 workload_id="myapp",
 endpoint_id="myapp-1-pod-1"
)

The sample program mentioned above showcases how the Calico Python
API client can be used to create and apply a new network policy to a
specific endpoint. Calico is a popular open-source networking and network
security solution for containers and virtual machines that is widely used in
modern distributed systems. By leveraging the Calico Python API client,
developers can easily automate network policies and security rules,
reducing the time and effort required to manage complex networking
environments.

The first step in the program is to establish a connection with the Calico
API using the Calico Python API client. This connection enables the client
to access and manipulate network policies and other network-related
configurations. By connecting to the Calico API, the client gains the ability
to create, update, delete, and apply network policies. Once the connection is
established, the program defines a new policy with a name, order, and a
single ingress rule that allows TCP traffic from the 10.0.0.0/16 network on
ports 80 and 443. The policy is a set of rules and regulations that define the
behavior of network traffic within a network or between different networks.
Network policies can be used to manage traffic, enhance security, and
optimize network performance.

After defining the policy, the program creates it in Calico using the create
method on the policies object of the client. This method creates the policy
in the Calico API and returns a policy object that can be further
manipulated if needed. Once the policy is created, the program applies it to
a specific endpoint using the apply_to_endpoint method on the
endpointpolicies object of the client. This method applies the policy to the
specified endpoint by associating the policy with the endpoint. The
endpoint can be a host, a container, or a virtual machine that is running in
the network.

The program specifies the name of the policy to apply, along with the
hostname, orchestrator ID, workload ID, and endpoint ID of the specific
endpoint we want to apply the policy to. This ensures that the policy is
applied only to the specific endpoint and not to other endpoints in the
network.

Workload Routing
Need of Workload Routing
Workload routing is a crucial aspect of container networking that enables
traffic to be directed between different applications and services within a
distributed system. It involves routing traffic between containers, services,
and pods based on predefined policies and routing rules. Workload routing
is essential for building scalable, fault-tolerant, and highly available
systems.

In a distributed system, there can be multiple services running on different
containers or pods. These services may interact with each other, and they
need to communicate with each other efficiently. Workload routing helps in
achieving this by directing traffic between the services based on specific
rules and policies. The need for workload routing arises due to the highly
dynamic nature of containerized environments. In traditional monolithic
applications, services are tightly coupled, and communication happens
through well-defined interfaces. But in a containerized environment,
services are decoupled, and there can be multiple instances of the same
service running on different containers or pods. Workload routing is
important because it enables the deployment of highly available and
scalable applications. By directing traffic based on predefined policies,
workload routing ensures that traffic is directed to the most appropriate
instance of a service. This helps in avoiding service disruptions and
minimizing downtime.
There are several workload routing techniques, including path-based
routing, header-based routing, and host-based routing. Path-based routing
involves routing traffic based on the URL path. Header-based routing
involves routing traffic based on the header value, and host-based routing
involves routing traffic based on the host name. To implement workload
routing, one can use a variety of tools and technologies. For example,
Kubernetes provides a built-in service discovery mechanism that can be
used to route traffic between different services. Other tools such as Istio,
Linkerd, and Consul can also be used to implement workload routing.

Istio
Istio is an open-source service mesh platform that provides advanced traffic
management capabilities such as load balancing, traffic routing, and fault
tolerance. It uses sidecar containers to inject additional functionality into
pods, allowing for more fine-grained control over traffic routing. Istio can
be integrated with Kubernetes, and it provides a range of features for
implementing workload routing, including path-based and header-based
routing.

Linkerd
Linkerd is another open-source service mesh platform that provides traffic
management capabilities. It uses a lightweight sidecar proxy that is
deployed alongside each pod to provide traffic routing and other features.
Linkerd is designed to be lightweight and easy to use, making it a popular
choice for implementing workload routing in containerized environments.

Consul
Consul is a service mesh platform that provides advanced service discovery
and routing capabilities. It provides a centralized registry of services and
can route traffic between different services based on predefined policies.
Consul can be integrated with Kubernetes and other container orchestration
platforms, and it provides a range of features for implementing workload
routing, including host-based routing and path-based routing.

Workload routing is a crucial aspect of container networking that enables
traffic to be directed between different services within a distributed system.
It is essential for building scalable, fault-tolerant, and highly available
systems. Workload routing can be implemented using a variety of tools and
technologies, including Istio, Linkerd, and Consul. By directing traffic
based on predefined policies, workload routing ensures that traffic is
directed to the most appropriate instance of a service, helping to avoid
service disruptions and minimize downtime.

Summary
In this chapter, we covered several topics related to Kubernetes networking
and automation. We began with a discussion on pods and how they are used
as the smallest deployable units in Kubernetes to run containers. We also
discussed the concept of pod networking and the importance of network
overlays in enabling communication between pods across nodes.

Next, we explored routing protocols, including BGP and VXLAN, and how
they are used in pod networking to enable efficient communication between
pods. We also discussed the limitations of these protocols, such as
scalability issues and the need for manual configuration. We then moved on
to discuss two popular networking solutions for Kubernetes: Calico and
Cilium. Calico is a network policy engine that provides fine-grained
network security and enables secure communication between pods, while
Cilium is a networking and security solution that uses eBPF technology to
provide a fast and secure network fabric for Kubernetes. We then talked
about the automation of network policies using Calico and Python,
including how to define network policies and automate their deployment
across the cluster. We also discussed the importance of workload routing in
enabling efficient communication between pods and ensuring optimal
resource utilization.

Overall, the chapter highlighted the importance of networking in
Kubernetes and the role of automation in simplifying the deployment and
management of complex network configurations. With tools like Calico and
Cilium, Kubernetes users can create secure, scalable, and efficient network
environments that enable seamless communication between pods and
ensure optimal workload routing.

CHAPTER 10: IMPLEMENTING
SERVICE MESH

Service-to-Service Communication
Remote Procedure Calls (RPCs)
The evolution of service-to-service communication can be traced back to
the early days of distributed computing, where services were designed to
interact with each other using Remote Procedure Calls (RPCs). This
communication model was simple and worked well for a small number of
services. However, as the number of services grew and distributed systems
became more complex, it became clear that a new approach was needed to
manage the interactions between services.

One of the primary challenges with RPC-based communication was the
tight coupling between services. Each service needed to know the details of
how to call the other services, including their interfaces and endpoints. This
made it difficult to modify or replace services without breaking the entire
system. It also made it challenging to scale services independently of each
other, as changes to one service could affect the performance and reliability
of other services.

Message-based Communication
To address these challenges, a new communication model called message-
based communication was developed. In this model, services communicate
with each other by exchanging messages over a shared communication
channel. Each service publishes messages to the channel, and other services
can subscribe to receive these messages. This decouples the services from
each other, making it easier to modify and replace services without
affecting the entire system.

Message-based communication also enabled the development of more
advanced communication patterns, such as publish-subscribe, request-reply,
and event-driven architectures. These patterns allow services to
communicate with each other in more flexible and powerful ways, enabling
new use cases and business models.

Need of Service-to-Service

However, as distributed systems became more complex and the number of
services grew, new challenges arose. One of the primary challenges was
managing the configuration and discovery of services. As the number of
services increased, it became difficult to keep track of all the services and
their endpoints. This led to the development of service discovery tools,
which enabled services to register themselves with a central registry and for
other services to discover them dynamically.

Another challenge was managing the security of service-to-service
communication. As services became more interconnected, it became critical
to ensure that only authorized services could communicate with each other.
This led to the development of new security models, such as mutual TLS
authentication, which enabled services to authenticate each other using
digital certificates.

Finally, as distributed systems became more dynamic and services were
deployed and scaled automatically, new challenges arose in managing the
lifecycle of services. This led to the development of new service
orchestration and management tools, such as Kubernetes and Docker
Swarm, which enabled services to be deployed and scaled automatically
and provided mechanisms for managing the health and availability of
services.

Overall, the evolution of service-to-service communication has been driven
by the need to manage the growing complexity and scale of distributed
systems. By decoupling services from each other and enabling more
flexible communication patterns, message-based communication has
enabled new use cases and business models. However, new challenges have
arisen in managing the configuration, security, and lifecycle of services,
which have led to the development of new tools and techniques for
managing distributed systems.

Rise of Service Mesh
The rise of microservices architecture has brought with it the need for better
service-to-service communication, as microservices are designed to work
together to form a complete application. However, traditional
communication methods such as REST API or RPC have several
limitations that make them unsuitable for microservices communication.
These limitations include increased latency, network congestion, and
increased complexity in terms of error handling, authentication, and
security. These challenges have given rise to the concept of service mesh.

A service mesh is an infrastructure layer that manages service-to-service
communication within a microservices architecture. It provides a unified
approach to handle the complexities of communication between services,
including traffic routing, service discovery, load balancing, security, and
monitoring. Service mesh helps to abstract the application network and
makes it easier to manage communication between services, without
requiring application code modifications. Service mesh is built on top of a
service mesh data plane and a service mesh control plane. The data plane is
responsible for managing and forwarding the network traffic between
services. It consists of a set of lightweight network proxies (sidecars) that
are deployed alongside each service instance. These proxies intercept all
incoming and outgoing network traffic and enforce service mesh policies
such as routing, load balancing, and security. The control plane is
responsible for configuring and managing the data plane proxies. It
provides a centralized management interface to configure policies and
control the flow of traffic between services.

Service mesh provides several benefits to microservices architecture. One
of the significant advantages of service mesh is traffic management. With
service mesh, traffic routing is done at the proxy level, which provides fine-
grained control over the routing of traffic between services. Service mesh
can be used to implement A/B testing, canary deployments, blue/green
deployments, and other traffic management techniques. This level of
control over traffic management ensures that services are available,
scalable, and performant. Another key benefit of service mesh is security.

Service mesh provides a centralized security layer that can be used to
enforce security policies such as mutual TLS authentication, access control,
and authorization. This helps to ensure that communication between
services is secure and compliant with enterprise security standards. Service
mesh also provides observability and monitoring capabilities that help to
troubleshoot and debug issues in a microservices architecture. Service mesh
provides detailed metrics and logs that can be used to gain visibility into the
performance and behavior of microservices. This visibility is essential in
ensuring that microservices are performing as expected and that they meet
the required service level objectives (SLOs).

The challenges of service-to-service communication in microservices
architecture gave rise to the concept of service mesh. Service mesh provides
a unified approach to handle the complexities of communication between
services and helps to abstract the application network. It provides several
benefits, including fine-grained traffic management, security, and
observability, which are essential in building and operating modern
microservices architectures.

Exploring Istio
Overview
Istio is an open-source service mesh platform that provides a uniform way
to connect, manage, and secure microservices running in a distributed
system. It was first introduced in May 2017 and was developed by Google,
IBM, and Lyft. Istio aims to solve the challenges of managing and securing
service-to-service communication in a modern, cloud-native application
architecture.

The primary function of Istio is to abstract the network and infrastructure
concerns away from application developers and enable them to focus on
building and deploying microservices. Istio provides a set of tools that can
be used to manage and monitor the communication between microservices
in a distributed system. It enables service-to-service communication to be
secure, reliable, and observable, which are essential features in a
microservices architecture.

Istio's architecture is based on a sidecar model, where each microservice is
paired with a sidecar proxy container that handles all the communication
between services. The sidecar proxy intercepts all incoming and outgoing
traffic for the service, allowing Istio to manage the traffic flow, enforce
policies, and apply security measures. The sidecar proxy container is
deployed alongside the application container and is injected into the same
Kubernetes pod.

Istio’s Capabilities
Istio's capabilities can be broadly categorized into three areas: traffic
management, security, and observability.

Traffic Management
Istio's traffic management features provide a way to control the flow of
traffic between microservices. It includes features such as load balancing,
traffic routing, fault injection, and circuit breaking. Istio's traffic
management features allow developers to control the behavior of their
microservices in response to different traffic scenarios. For example, Istio

can be used to split traffic between multiple versions of a service or to route
traffic based on specific criteria such as HTTP headers.

Security
Istio provides a comprehensive set of security features that can be used to
secure service-to-service communication. It includes features such as
mutual TLS authentication, access control, and certificate management.
Istio enables service-to-service communication to be encrypted,
authenticated, and authorized. It also provides an audit trail of all traffic
flowing between microservices, which can be used to troubleshoot security
issues.

Observability
Istio's observability features provide a way to monitor and debug
microservices in a distributed system. It includes features such as tracing,
metrics, and logging. Istio provides a unified view of all the microservices
in a system, allowing developers to quickly identify issues and troubleshoot
problems. Istio's observability features enable developers to gain insights
into the behavior of their microservices and to optimize their performance.

Overall, Istio is a powerful tool for managing, securing, and monitoring
service-to-service communication in a distributed system. It provides a
uniform way to connect, manage, and secure microservices, which enables
developers to focus on building and deploying their applications without
worrying about the underlying infrastructure. With its comprehensive set of
features, Istio is becoming an essential tool for modern cloud-native
applications.

Installing Istio
The give below are the steps to install Istio:

Download the Istio distribution: Go to the Istio release page on GitHub and
download the Istio distribution for your operating system.

Extract the Istio distribution: After downloading the Istio distribution,
extract it to a local directory using the following command:

tar -xzf istio-<version>-linux-amd64.tar.gz

Add the Istio binary directory to your PATH: Navigate to the Istio directory
you just extracted and add the bin subdirectory to your PATH environment
variable using the following command:

export PATH=$PWD/bin:$PATH

Install Istio on your cluster: Use the istioctl command to install Istio on
your Kubernetes cluster. The following command installs the Istio control
plane components:

istioctl install

Verify the installation: Run the following command to ensure that all Istio
components are running:

kubectl get pods -n istio-system

You should see output similar to the following:

NAME READY STATUS RESTARTS
AGE
istio-egressgateway-84bb7b48c4-qj6lh 1/1 Running 0
 4m47s
istio-ingressgateway-659b64d86f-d7vlb 1/1 Running 0
 4m47s

istiod-9f465d7d9-qdvf8 1/1 Running 0
5m14s
prometheus-56b7ccff9d-ghz8w 2/2 Running 0
4m49s

Finally, you have your Istio successfully installed on your Kubernetes
cluster.

Cluster Traffic
In order to make services running inside a cluster accessible from the
outside, it is necessary to expose them. This can be achieved through
various methods such as NodePort, LoadBalancer, and Ingress. NodePort
makes a service accessible on a static port on each node in the cluster,
LoadBalancer assigns a dedicated external IP address, and Ingress acts as a
smart router that enables multiple services to share a single IP address and
port. These methods offer flexibility and scalability when managing traffic
flow into the cluster.

NodePort
NodePort is a straightforward method of making a service accessible to
external clients. This Kubernetes feature maps a designated port on every
worker node to the service. This way, traffic can be directed to the service
through the IP address of the node and the designated port. With NodePort,
clients outside the cluster can access the service by sending requests to the
node's IP address, and Kubernetes will route the traffic to the appropriate
service. This feature is particularly useful when deploying services that
require external access or when load balancing is necessary for better
application performance.

LoadBalancer
A LoadBalancer is a popular method to make a service available to external
users. It creates a cloud load balancer to distribute incoming traffic across
multiple backend servers running the service, thus improving availability
and scalability. This process helps to ensure that the service is able to
handle high volumes of traffic without being overwhelmed. Additionally, a
LoadBalancer creates a public IP address that enables external users to
access the service. This IP address can be used to communicate with the
service from anywhere on the internet, providing a convenient and reliable
way to connect with the service.

Ingress

Ingress is a more powerful way to expose services to the outside world. It
allows for more fine-grained routing of traffic to different services based on
various criteria such as URI, host, and headers. It is commonly used in
conjunction with a controller that manages the routing rules and provisions
the necessary resources.

Once the traffic is flowing into the cluster, Istio can be used to manage the
traffic and provide advanced networking features such as load balancing,
traffic routing, traffic shaping, fault injection, and more. Istio achieves this
by deploying a sidecar proxy alongside each service instance, which
intercepts all traffic to and from the service instance. The sidecar proxy is
responsible for enforcing traffic management policies such as routing rules
and traffic shaping.

Istio uses Envoy as the sidecar proxy, which is a high-performance proxy
developed by Lyft. Envoy provides a rich set of features such as load
balancing, circuit breaking, retries, rate limiting, and more. Istio extends
Envoy's capabilities by adding a control plane that manages the sidecar
proxies and provides a uniform way to configure traffic management
policies across the entire service mesh.

Istio Control Plane
The control plane in a distributed system is a critical component that
manages the overall network infrastructure and enables efficient
communication between different services. It consists of several important
components that work together to ensure the proper functioning of the
system.

One of the key components of the control plane is the Pilot. The Pilot is
responsible for configuring sidecar proxies and managing traffic routing. It
ensures that network traffic is efficiently routed between different services,
and that requests are processed in a timely and reliable manner. The Pilot
also provides important traffic management features such as load balancing,
traffic splitting, and fault tolerance. Another important component of the
control plane is the Mixer. The Mixer is responsible for enforcing policy
decisions such as authentication, authorization, and rate limiting. It enables
administrators to enforce security policies and ensure that only authorized

users can access specific services or resources. The Mixer also provides
important telemetry features such as logging, tracing, and monitoring,
which help administrators to identify and resolve performance issues.

The Citadel is another critical component of the control plane. The Citadel
is responsible for managing TLS certificates and enforcing mutual TLS
authentication between services. It ensures that all communication between
different services is encrypted and secure, and that only trusted services can
access sensitive data or resources. Finally, the Galley is responsible for
validating and distributing configuration data to the other components. It
enables administrators to efficiently manage and distribute configuration
data across different services, ensuring that all services are configured
correctly and operate according to best practices.

Together, these components provide a powerful and flexible platform for
managing service-to-service communication in a distributed system. Istio
makes it easy to apply advanced networking features to microservices
without having to modify the application code, and provides visibility into
the traffic flowing through the system, making it easier to debug and
diagnose issues.

Using Istio to Route Traffic
The code below serves as an example of how to utilize Istio to route
network traffic to a cluster. Istio is a powerful tool that enables developers
to better manage and secure their microservices architecture, and this code
provides a basic foundation for doing so.

First, we need to ensure that Istio is installed and running on our
Kubernetes cluster. We can do this by running the following command:

$ istioctl version

This command will display the version of Istio that is installed on the
cluster.

Next, we need to create a deployment and a service for our application.
Following is an example YAML file for creating a deployment and a
service for a simple web application:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: myapp
 labels:
 app: myapp
spec:
 replicas: 3
 selector:
 matchLabels:
 app: myapp
 template:
 metadata:
 labels:
 app: myapp
 spec:

 containers:
 - name: myapp
 image: myapp:latest
 ports:
 - containerPort: 80

apiVersion: v1
kind: Service
metadata:
 name: myapp
 labels:
 app: myapp
spec:
 selector:
 app: myapp
 ports:
 - name: http
 port: 80
 targetPort: 80

This YAML file creates a deployment with three replicas and a service that
exposes port 80.

Once our deployment and service are created, we can apply Istio routing
rules to control the traffic to our application.

Following is an example YAML file for creating a VirtualService and a
Gateway for our application:

apiVersion: networking.istio.io/v1alpha3
kind: Gateway
metadata:
 name: myapp-gateway
spec:

 selector:
 istio: ingressgateway
 servers:
 - port:
 number: 80
 name: http
 protocol: HTTP
 hosts:
 - "*"

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: myapp
spec:
 hosts:
 - "*"
 gateways:
 - myapp-gateway
 http:
 - route:
 - destination:
 host: myapp
 port:
 number: 80

This YAML file creates a Gateway that listens on port 80 and a
VirtualService that routes traffic to our application. The VirtualService
specifies that all traffic should be sent to the service named myapp on port
80.

Finally, we can apply the YAML file to our cluster using the kubectl apply
command:

$ kubectl apply -f myapp.yaml

This command will create the deployment, service, Gateway, and
VirtualService for our application.

To verify that our application is running and that Istio is routing traffic to it,
we can use the kubectl get command:

$ kubectl get pods,svc,gateway,virtualservice

This command will display the status of our deployment, service, Gateway,
and VirtualService. We should see that our application has three running
pods and that Istio has created a Gateway and a VirtualService for it.

With these steps, we have successfully routed traffic to the application
using Istio.

Metrics, Logs and Traces
Istio is a powerful service mesh that provides a range of features to help
manage and secure microservices-based applications. One of its key
capabilities is the ability to collect and monitor metrics, logs, and traces
from across the service mesh.

Metrics
Collecting metrics in Istio is accomplished using a combination of
Prometheus and Grafana. Prometheus is a popular open-source monitoring
tool that is designed to scrape and store time-series data. Istio integrates
with Prometheus to collect metrics data about the performance and behavior
of the services in the mesh. Grafana is a powerful visualization tool that is
used to display the metrics collected by Prometheus. With Grafana, users
can create custom dashboards to track specific metrics over time and
visualize how they change in response to changes in the service mesh.

Logs
In addition to its comprehensive metrics capabilities, Istio also provides
robust logging functionality to help users monitor and analyze the behavior
of services within the mesh. By default, Istio leverages Envoy's access logs
to log requests and responses as they traverse the service mesh. These logs
contain valuable information such as HTTP status codes, request and
response headers, and payload size. This data can be used to identify issues
related to service communication, performance, and security.

To make sense of these logs, users can leverage a variety of log collection
and aggregation tools such as Elasticsearch, Kibana, or Fluentd. These tools
can help users to filter, search, and visualize the logs in a meaningful way.
For example, users can set up dashboards and alerts to monitor specific logs
or events, making it easier to troubleshoot issues and proactively address
potential problems.

Traces
Tracing is another key feature of Istio's monitoring capabilities. Istio
integrates with Jaeger, an open-source distributed tracing system, to provide

end-to-end tracing across the service mesh. With tracing, users can gain
deep insights into how requests are processed across different microservices
and identify performance bottlenecks and other issues.

To enable monitoring in Istio, there are a few key steps that need to be
taken. First, users need to enable Istio's metrics and tracing components.
This can be done using the istioctl command-line tool or by updating the
Istio configuration files directly. Once metrics and tracing are enabled, users
can begin to collect and analyze data using Prometheus, Grafana, and
Jaeger.

To collect logs in Istio, users can configure Istio to send access logs to an
external logging system like Elasticsearch or Fluentd. Istio also provides
built-in support for Fluentd, allowing users to easily configure and deploy a
Fluentd instance to collect logs from the service mesh.

Overall, Istio provides a powerful set of tools and capabilities for
monitoring and analyzing the behavior of microservices-based applications.
By collecting and analyzing metrics, logs, and traces, Istio enables users to
gain deep insights into how their services are performing and identify issues
before they impact end-users. Whether you're running a small-scale
application or a large-scale production environment, Istio's monitoring
capabilities can help you ensure the reliability and performance of your
services.

Using Grafana to Collect Metrics
Steps to Collect Metrics
Following are the steps to collect metrics in Istio using Grafana:

First, you will need to install and set up Istio and Grafana. You can follow
the Istio installation guide and the Grafana installation guide to do this.

Once you have Istio and Grafana installed, you can use the Istio dashboard
in Grafana to collect metrics. The Istio dashboard provides a variety of
metrics related to Istio's control plane and data plane, such as request
volume, response latency, and error rates.

To access the Istio dashboard in Grafana, go to the Grafana UI and click on
the "Dashboards" button in the sidebar. Then click on the "Manage" button,
and search for "Istio". You should see the Istio dashboard listed in the
results. Click on the dashboard to open it.

Once you have the Istio dashboard open, you can customize it to display the
metrics you are interested in. For example, you can add new panels to
display metrics related to specific services or workloads in your cluster. You
can also customize the dashboard's time range and refresh interval to suit
your needs.

To collect metrics from your Istio-enabled services, you will need to enable
Istio's metrics collection feature. This can be done by adding a
configuration file to your Istio installation that specifies the metrics you
want to collect.

Following is an example configuration file that enables metrics collection
for all services in your cluster:

apiVersion: v1
kind: ConfigMap
metadata:
 name: istio
 namespace: istio-system

data:
 mesh: |-
 defaultConfig:
 metrics:
 enabled: true
 prometheus:
 enabled: true

Save this configuration file as istio-config.yaml, and apply it to your Istio
installation using the following command:

$ kubectl apply -f istio-config.yaml

Once you have enabled Istio's metrics collection feature, you should start to
see metrics data in the Istio dashboard in Grafana. You can use Grafana's
query language to filter and aggregate the metrics data, and create custom
visualizations and alerts based on the data.

For example, you could create a panel that displays the request volume for a
specific service in your cluster. To do this, you would add a new panel to
the Istio dashboard, select the "Prometheus" data source, and use a query
like the following:

sum(rate(istio_requests_total{destination_service="<service-
name>"}[1m]))

This query would display the request volume for the specified service over
the last minute.

With Istio and Grafana, you can collect and analyze metrics data from your
service mesh, and use this data to optimize and troubleshoot your
applications.

Summary
In this chapter, we discussed the evolution of service-to-service
communication and how it led to the development of service mesh. We
explored the challenges faced in service-to-service communication, such as
complexity in managing and securing communication between
microservices, and how service mesh helps address these challenges by
providing a dedicated infrastructure layer for managing service
communication.

We then introduced Istio, a popular service mesh tool, and discussed its
working mechanism and capabilities. Istio works by injecting a sidecar
proxy, Envoy, alongside each microservice instance in the cluster. This
sidecar proxy manages and secures the communication between
microservices, providing features such as traffic routing, load balancing,
and service discovery. We then discussed the steps involved in installing
Istio and using it to route traffic to the cluster. We explained the concept of
ingress and how Istio can be used to manage incoming traffic to the cluster,
including routing traffic based on rules and performing traffic shaping. We
also explored the importance of collecting and monitoring metrics, logs,
and traces in Istio for debugging and performance analysis. We explained
how Istio provides telemetry capabilities to collect metrics, logs, and traces
from Envoy proxies, which can be visualized using tools such as Grafana
and Kiali. To demonstrate how to collect metrics in Istio using Grafana, we
provided a sample program that sets up Grafana and Prometheus to collect
and visualize Istio metrics.

Istio is a powerful service mesh tool that provides a dedicated infrastructure
layer for managing and securing service-to-service communication in
microservice-based applications. It offers features such as traffic routing,
load balancing, and service discovery, while also providing telemetry
capabilities for collecting and monitoring metrics, logs, and traces. By using
Istio, developers can simplify the management of microservices and
improve the overall performance and reliability of their applications.

THANK YOU

	Mastering Python Network Automation
	Chapter 1: Python Essentials for Networks
	Chapter 2: File Handling and Modules in Python
	Chapter 3: Preparing Network Automation Lab
	Chapter 4: Configuring Libraries and Lab Components
	Chapter 5: Code, Test & Validate Network Automation
	Chapter 6: Automation of Configuration Management
	Chapter 7: Managing Docker and Container Networks
	Chapter 8: Orchestrating Container & Workloads
	Chapter 9: Pod Networking
	Chapter 10: Implementing Service Mesh
	Thank You

